Пневмоторакс буйвола (или грудь буйвола ) относится к редкому случаю двустороннего пневмоторакса, вызванного аномальным физическим сообщением между двумя плевральными полостями . Предполагается, что плевроплевральная связь находится в передней срединной части груди, где происходит потеря нормального анатомического разделения двух плевральных пространств на передней соединительной линии .
Наличие раздельных правого и левого пневмоторакса одновременно встречается крайне редко, и следует заподозрить плевроплевральное сообщение.
Проявление может быть хуже, чем при одностороннем пневмотораксе того же размера, включая сильное и внезапное начало одышки и плевритической боли в груди, тахикардию и гипотонию. При достаточном напряжении развивается пневмоторакс, при котором у пациента может произойти остановка сердца и смерть.
Патология
Существует множество причин, которые были описаны в отчетах о случаях:
Характеристики грудной клетки буйвола идентичны одностороннему пневмотораксу, за исключением того, что он двусторонний. Из-за двусторонней природы может быть конкурирующий массовый эффект в грудной клетке, приводящий к минимальному или даже отсутствию смещения средостения. Но если количество воздуха в «комбинированном» плевральном пространстве достаточно значительно, может присутствовать физиология напряжения.
Могут быть признаки, указывающие на возможную причину, такие как:
Стернальные провода, указывающие на недавнюю торакотомию
переломы ребер или другие признаки травмы грудной клетки
респираторные заболевания, такие как ХОБЛ, астма или муковисцидоз
Лечение и прогноз
Теоретически, установка одностороннего плеврального катетера должна декомпрессировать двусторонний пневмоторакс. Однако некоторые из них лечились двусторонним плевральным дренажем.
История и этимология
У видов буйволов имеется одна смежная плевральная полость, содержащая оба легких. Охотясь на американского буйвола, коренные американцы стреляли одной стрелой в грудь зверя, что «вероятно приводило к коллапсу обоих легких, делая животное недееспособным» 5 .
Сообщалось также, что овцы и мулы имеют схожую анатомию, а у некоторых лошадей могут быть вентральные плевральные окна.
Антибиотиковые шарики для имплантации являются формой микробиологического лечения, во время ортопедических процедур для помощи в лечении хронической инфекции. Они также используются в качестве местного лечения остеомиелита .
Гранулы рентгеноконтрастны, что позволяет визуализировать их с помощью всех методов визуализации.
состояние после удаления правого гемиартропластика
Послеоперационное удаление инфицированного бесцементного биполярного гемиартропластикного имплантата правого тазобедренного сустава, тщательное промывание и помещение в рану гранул, пропитанных антибиотиком.
Абсорбируемые гранулы сульфата кальция традиционно использовались в качестве наполнителя и средства доставки антибиотиков «не по назначению» при артропластике, хроническом остеомиелите, открытых переломах и боевых травмах. Они создают локальную высокую концентрацию в пораженной области, поддерживая при этом более низкие системные уровни тех же антибиотиков.
Высотный отек легких (HAPE) — это тяжелая форма высотной болезни, которая, если ее не лечить, может привести к смерти у 50 процентов пострадавших. Она возникает вторично по отношению к гипоксии и является формой некардиогенного отека легких. Она характеризуется усталостью, одышкой и сухим кашлем при нагрузке. Если ее не лечить, она может прогрессировать до одышки в покое, хрипов и цианоза. В этой статье рассматриваются проявления, оценка и лечение высотного отека легких и подчеркивается роль междисциплинарного командного подхода к уходу за пораженными пациентами.
Введение
Высотный отек легких (HAPE) — это фатальная форма тяжелой высотной болезни. HAPE — это форма некардиогенного отека легких, которая возникает вторично из-за гипоксии. Это клинический диагноз, характеризующийся усталостью, одышкой и сухим кашлем при нагрузке. Если его не лечить, он может прогрессировать до одышки в покое, хрипов, цианоза и уровня смертности до 50%.
Этиология
Наряду с другими заболеваниями, связанными с высотой, HAPE возникает на высоте более 2500 метров, но может возникнуть и на высоте до 2000 метров. Факторы риска включают индивидуальную восприимчивость из-за низкой гипоксической респираторной реакции (HVR), достигнутую высоту, быструю скорость подъема, мужской пол, использование снотворных препаратов, чрезмерное потребление соли, низкую температуру окружающей среды и тяжелую физическую нагрузку. Существующие ранее состояния, такие как те, которые приводят к увеличению легочного кровотока, легочной гипертензии, повышенной легочной сосудистой реактивности или открытому овальному отверстию, могут иметь более высокую предрасположенность к развитию HAPE.
Эпидемиология
Тяжесть HAPE будет зависеть от множества факторов, включая высоту, первоначальное распознавание и лечение, а также доступ к медицинской помощи. На высоте 4500 метров заболеваемость составляет от 0,6% до 6%, а на высоте 5500 метров заболеваемость составляет от 2% до 15%, при этом более быстрое время подъема коррелирует с более высокой заболеваемостью. У тех, у кого уже был HAPE, частота рецидивов достигает 60%. Уровень физической подготовки человека не является защитным фактором. Уровень смертности при лечении может достигать 11% и до 50% при отсутствии лечения. До 50% случаев могут иметь сопутствующую острую горную болезнь (ОГБ), а до 14% будут иметь сопутствующий отек мозга на больших высотах (ОМГ).
Патофизиология
Развитие HAPE происходит как реакция легочной сосудистой системы на гипоксию. На высоте организм реагирует на гипоксию гипервентиляцией. Это известно как гипоксическая вентиляционная реакция (HVR). Эта реакция различается у разных людей и имеет генетический компонент. Адаптация к большой высоте — интересное явление, которое регулярно встречается у людей, живущих на высоте в течение длительного времени, но не характерно для тех, кто посещает высоту. Однако понимание принципов доставки кислорода в ткани полезно при рассмотрении эффектов и адаптации тех, кто переходит из более высокого барометрического давления в более низкое давление большой высоты. Концентрация кислорода в 1 литре воздуха на уровне моря составляет 21%. Эта концентрация такая же на высоте 4000 метров (~13 200 футов), но из-за пониженного барометрического давления на этой высоте остается только 63% от количества доступных молекул кислорода по сравнению с уровнем моря. Таким образом, для адекватной доставки кислорода к тканям, особенно тем, которые больше всего нуждаются в кислороде для аэробного метаболизма (мозг, сердце, легкие, почки), должны произойти определенные адаптации.
Существует четыре потенциальных адаптации для преодоления ограничений высокогорной гипоксии:
(1) вентиляция в состоянии покоя,
(2) гипоксическая вентиляционная реакция,
(3) насыщение кислородом артериального гемоглобина и
(4) концентрация гемоглобина.
Исследования популяций в Андах и Тибетских хребтах и хребтах показали различные адаптивные изменения между группами, несмотря на то, что они находятся на одной высоте. У жителей Тибета среднее значение на 0,5 стандартного отклонения было выше, чем у народа аймара в Андах для первых двух признаков, и на полное стандартное отклонение ниже для последних двух признаков.
Это исследование предполагает генетическую предрасположенность к тому, как разные группы людей на одной высоте могут адаптироваться к стрессу на большой высоте. Для тех, кто путешествует на большую высоту на короткий период, минутная вентиляция, как правило, является механизмом, с помощью которого треккеры с низкой высоты будут акклиматизироваться. В целом, требуется от 1 до 2 недель, чтобы уровень эритропоэтина увеличился достаточно, чтобы вызвать кроветворение и увеличение циркулирующего гемоглобина.
Когда человек поднимается на большую высоту, минутная вентиляция почти сразу увеличивается, и наступает респираторный алкалоз. Это вызывает сдвиг кривой диссоциации кислорода влево (увеличение сродства кислорода к гемоглобину). В ответ на этот механизм почки начинают увеличивать реабсорбцию протонов, что стабилизирует pH крови. Уровни 2,3-DPG в эритроцитах начинают увеличиваться на 2-й и 3-й дни. Затем кривая диссоциации Hgb-O2 смещается вправо (снижение сродства к O2 гемоглобином). Это позволяет более адекватно доставлять кислород тканям, особенно мышечным тканям, которые могут находиться под большим стрессом из-за нагрузки при подъеме и/или треккинге. Если HVR притупляется из-за генетической предрасположенности или седативных средств, это приведет к дальнейшей гипоксии, вызывая неравномерную, преувеличенную гипоксическую легочную вазоконстрикцию (HPV). Эта легочная вазоконстрикция затем приводит к увеличению перфузии пораженных альвеол, вызывая повышенный гидростатический стресс/давление и, таким образом, повышенную механическую нагрузку на барьер кровь-газ. Повреждение барьера кровь-газ приводит к повышению проницаемости капилляров и последующему неравномерному отеку легких. Это образование отека затрудняет транспорт кислорода, что приводит к более распространенному и ухудшающемуся HPV. Симпатическая стимуляция и циркулирующие вазоконстрикторы из реакции HPV приводят к вазоконстрикции, усугублению легочной гипертензии и повышению капиллярного давления. Если у человека отсутствует врожденная адаптация к этим изменениям на уровне органов или состояние не распознается и не лечится, болезненное состояние будет сохраняться и продолжать ухудшаться.
Развитие и течение
HAPE обычно возникает через 2–5 дней после прибытия на высоту. Он имеет скрытое начало с непродуктивным кашлем, снижением толерантности к физической нагрузке, болью в груди и одышкой при нагрузке. Без лечения он может прогрессировать до одышки в покое и тяжелой одышки при нагрузке. Кашель может стать продуктивным с розовой и пенистой мокротой или откровенной кровью. У пациента также могут быть хрипы или свистящее дыхание, центральный цианоз, тахипноэ и/или тахикардия. SpO2 часто на 10% меньше ожидаемого для высоты, и пациент часто будет выглядеть лучше, чем ожидалось, учитывая его уровень гипоксемии и значение SpO2, которое обычно находится около 40–70%.
Симптомы и жалобы
Клинический диагноз HAPE будет включать по крайней мере два из следующих симптомов или жалоб: стеснение или боль в груди, кашель, одышка в покое и снижение толерантности к физической нагрузке. Он также будет иметь два из следующих результатов обследования: центральный цианоз, хрипы/свистящее дыхание, тахикардия и тахипноэ.
При наличии рентгенограмма может показать пятнистые альвеолярные инфильтраты с нормальными размерами средостения/сердца, а УЗИ может показать B-линии, соответствующие отеку легких. ЭКГ может показать признаки отклонения оси вправо и/или ишемии. У пациента с инфильтратами на рентгенограмме быстрая коррекция клинического состояния и SpO2 с помощью дополнительного кислорода является патогномоничной для HAPE. Даже при наличии лабораторные исследования имеют ограниченную полезность, и врач всегда должен учитывать сопутствующую AMS и/или HACE.
Основой лечения является спуск на 1000 метров или до тех пор, пока симптомы не исчезнут при спуске. Во время спуска важно минимизировать нагрузку, поскольку нагрузка может усилить гипоксемию из-за метаболических потребностей организма и ухудшить состояние человека.
Если возможно, пробная кислородная терапия может облегчить симптомы и помочь пациенту выждать время, если спуск технически сложен или задерживается. При этом основой лечения остается спуск, независимо от доступности кислорода. Дополнительный кислород через высокопоточную носовую канюлю и лицевую маску, титрованный до Sp02 более 90%, является разумной альтернативой, если это возможно. Портативные гипербарические камеры также могут использоваться, когда спуск невозможен, но они, как правило, требуют постоянного ухода и могут быть трудны для людей, испытывающих тошноту или рвоту, клаустрофобию или измененное психическое состояние из-за сопутствующей горной болезни/высокогорного отека мозга. Также существует риск рецидива симптомов после выхода из камеры. Нифедипин улучшает симптомы в качестве вспомогательного средства, уменьшая легочную вазоконстрикцию, но не должен использоваться в качестве единственной терапии, если есть варианты кислорода или спуска. Ингибиторы фосфодиэстеразы могут использоваться для снижения давления в легочной артерии и капиллярах посредством вазодилатации, если нифедипин недоступен. Клинически не доказана роль ацетазоламида, B-агониста или диуретиков.
Девушка 20 лет
Пациентка получила перелом левой ключицы после падения с высоты собственного роста. Четыре месяца спустя была сделана контрольная рентгенограмма, которая выявила обширное поражение с проницаемым видом, подозрительное на неоплазию. Иммуногистохимия показала картину, совместимую с саркомой Юинга . После химиотерапии была проведена хирургическая резекция, а гистология подтвердила диагноз
Рентгенограмма показывает обширное поражение левой ключицы с проникающим повреждением Проекция двух ключиц демонстрирует разницу с нормальной ключицей.
На КТ Остеолитическое поражение с неровными краями в левой ключице, распространяющееся на надостные мышцы, имеющие патологический вид.
Сцинтиграфия показывает умеренное увеличение поглощения в плечевом конце левой ключицы. Признаков метастазов в кости не наблюдается.
На МРТ определяется поражение левой ключицы с гипосигналом на Т1, гиперсигналом на Т2, с накоплением контраста , захватывающее всю дистальную часть левой ключицы, акромиально-ключичный сустав , часть акромиона и распространяющееся на соседние мягкие ткани .
Рентгенограммы, препарата сделанные после хирургической резекции. Обширное поражение с ключицы
Пациент получил перелом левой ключицы после падения с высоты собственного роста. Четыре месяца спустя была сделана контрольная рентгенограмма, которая выявила обширное поражение с проницаемым видом, подозрительное на неоплазию. Иммуногистохимия показала картину, совместимую с саркомой Юинга . После химиотерапии была проведена хирургическая резекция, а гистология подтвердила диагноз
Рентгенограмма грудной клетки: легкая кардиомегалия. Правосторонняя дуга аорты. Срединная стернотомическая проволока и хирургические зажимы. Легкие чистые. Плеврального выпота и пневмоторакса нет.
КТА: Правосторонняя дуга аорты с аберрантной запищеводной левой подключичной артерией. Состояние двойного выброса правого желудочка после закрытия дефекта межжелудочковой перегородки (ДМЖП) и ревизии правого желудочка в кондуит легочной артерии, что кажется широко очевидным. Хронически окклюзированный левый подключичный шунт Блэлока-Томаса-Тауссига (шунт БТТ). Дилатация правого желудочка.
Плечеголовная, подключичная, проксимальная общая сонная и проксимальная позвоночная артерии проходимы.
Дифференциальная диагностика:
Правосторонняя дуга аорты
Гипопластическая восходящая аорта
Коарктация аорты
Шейная дуга аорты
Бычья арка
Декстрокардия
Диагноз: Правосторонняя дуга аорты с аберрантной левой подключичной артерией.
Обсуждение случая
Правосторонняя дуга аорты с аберрантной левой подключичной артерией.
Патофизиология
Правосторонняя дуга аорты возникает в результате аномального эмбрионального развития. Считается, что подтип правосторонней дуги аорты с аберрантной левой подключичной артерией возникает в результате инволюции левых четвертой и шестой жаберных дуг. Аберрантная левая подключичная артерия проходит позади пищевода, а аорта спускается справа.
Эпидемиология
Правосторонняя дуга аорты — редкий вариант дуги аорты, который, как полагают, встречается менее чем у 0,2% населения и связан с другими врожденными пороками сердца и синдромом ДиДжорджа. Правосторонние дуги аорты классифицируются в зависимости от характера разветвления сосудистой сети. Наиболее распространенные типы встречаются с аберрантной левой подключичной артерией или с зеркальным ветвлением.
Клиническая картина
Клиническая картина правосторонней дуги аорты может варьироваться в зависимости от сопутствующих аномалий, поскольку у многих пациентов могут быть сопутствующие врожденные пороки сердца. У пациентов могут наблюдаться такие симптомы, как дисфагия из-за сдавления пищевода и/или стридор, а также затруднение дыхания из-за сдавления трахеи аберрантной сосудистой сетью.
Результаты визуализации
Рентгенограмма грудной клетки демонстрирует отсутствие левостороннего бугорка аорты при наличии правостороннего выпуклого контура средостения. Возможно сопутствующее отклонение трахеи влево. На КТ дуга аорты будет располагаться справа от средней линии, при этом нисходящая аорта проходит вдоль правой стороны сердца. Аберрантная анатомия сосудов дуги лучше визуализируется на КТ. Наиболее распространенный тип правосторонней дуги аорты возникает при аберрантной левой подключичной артерии, как в этом случае, в котором порядок возникновения сосудов дуги следующий: левая общая сонная артерия, правая общая сонная артерия, правая подключичная артерия и левая подключичная артерия. Кроме того, КТ может выявить сдавление трахеи или пищевода вследствие аберрантной сосудистой сети.
Уход
Лечение правосторонней дуги аорты зависит от сопутствующих результатов и симптомов у пациента. Хирургическое вмешательство может быть показано пациентам со сдавлением прилегающих структур, таких как трахея и пищевод, или пациентам с сопутствующими сердечно-сосудистыми аномалиями.
Литература
Arazińska A, Polguj M, Szymczyk K, Kaczmarska M, Trębiński Ł, Stefańczyk L. Right aortic arch analysis – Anatomical variant or serious vascular defect? BMC Cardiovasc Disord. 2017;17(1):102. doi: 10.1186/s12872-017-0536-z.
Bae SB, Kang EJ, Choo KS, Lee J, Kim SH, Lim KJ, Kwon H. Aortic arch variants and anomalies: Embryology, imaging findings, and clinical considerations. J Cardiovasc Imaging. 2022;30(4):231-262. doi: 10.4250/jcvi.2022.0058.
Kawano T, Soeda M, Hata H, Hirayama A. Multidetector computed tomography images of right aortic arch and a left subclavian artery arising from a Kommerell diverticulum. J Am Coll Cardiol. 2010;55(7):697. doi: 10.1016/j.jacc.2009.04.105.
Hanneman K, Newman B, Chan F. Congenital variants and anomalies of the aortic arch. Radiographics. 2017;37(1):32-51. doi: 10.1148/rg.2017160033.
Оригинал взят с сайта auntminnie.com
https://microsievert.ru/wp-content/uploads/2024/06/one_34-y-o_man_followup_cardiac_surgery.webp518900Андрей Тихмяновhttps://microsievert.ru/wp-content/uploads/2024/06/Untitled-1.pngАндрей Тихмянов2024-06-24 07:32:312024-06-24 08:09:06Правосторонняя дуга аорты с аберрантной левой подключичной артерией
Остеоид-остеома представляет собой доброкачественную опухоль кости неустановленной этиологии, состоящую из центральной зоны, называемой очагом, которая представляет собой атипичную кость, полностью заключенную в хорошо васкуляризированную строму, и периферическую зону склеротической реакции. Выделяют три типа рентгенологических особенностей: кортикальные, медуллярные и поднадкостничные. Ретроспективно исследованы 44 пациента с остеоид-остеомой. На обзорных снимках 35 пациентов имели кортикальный тип, шесть случаев располагались в медуллярной зоне и три имели поднадкостничную остеоид-остеому. Во всех случаях очаг поражения визуализировался на компьютерной томографии (КТ). Очаг был виден у четырех из пяти пациентов, которым также была проведена магнитно-резонансная томография (МРТ). Признак двойной плотности, наблюдаемый при радионуклидном сканировании костей, был положительным у всех пациентов. МРТ более чувствительна в диагностике аномалий костного мозга и мягких тканей, прилегающих к очагу поражения, а также очага, расположенного ближе к медуллярной зоне. С другой стороны, КТ более специфична в обнаружении очага поражения.
Остеоид-остеома была впервые описана доктором Яффе в 1935 году как доброкачественная опухоль кости [ 1 ]. В течение нескольких десятилетий ортопедические сообщества считали остеоид-остеому вариантом остеомиелита, но в настоящее время ее принимают как доброкачественную опухоль кости неустановленной этиологии, составляющую 10% доброкачественных новообразований скелета [ 2 ].
Остеоид-остеома представляет собой небольшую сферическую опухоль диаметром 1,5 см или меньше, состоящую из центральной зоны, называемой очагом, которая представляет собой атипичную кость, полностью заключенную в хорошо васкуляризированную строму. Периферическая зона склеротической реакции состоит из остеобластов, остеокластов и расширенных капилляров, окружающих очаг [ 3 ]. Периферические нервные волокна обильны внутри и вокруг остеоид-остеомы, что является уникальной особенностью этой опухоли [ 3 ]. Уровень простагландинов в очаге поражения в 100–1000 раз выше, чем в нормальных тканях [ 4 ]. Они вызывают расширение сосудов и, как следствие, повышение проницаемости капилляров в тканях, окружающих очаг поражения, и, как полагают, опосредуют боль, связанную с опухолью, классически описываемую как ночные боли, облегчаемые салицилатами. Однако межсуставные поражения показали меньшую реакцию на нестероидные противовоспалительные препараты (НПВП ) по сравнению с внесетчатыми поражениями [ 5 ][ 6 ].
Это поражение может поражать любую кость скелетной системы, но чаще всего встречается в длинных костях нижних конечностей; а именно, проксимальный отдел бедренной кости (Рисунок 1), что является причиной 25-27% таких поражений. Около 5-12% остеоид-остеом представляют собой межсуставные поражения [ 3 ].
19-летний мужчина с болью в бедре.На снимке тела выявляется круглая область плотности с центральным рентгенопрозрачным очагом в шейке бедренной кости.
На обзорных рентгенограммах поражение характеризуется небольшим очагом, окруженным плотной костью.фигура 2). Очаг чаще всего представляет собой рентгенопрозрачный участок диаметром не более 5 мм, значительно или слегка кальцинированный в зависимости от давности заболевания (Рисунок 3).
17-летний мужчина с болью в руке.Поражение характеризуется как небольшой очаг, окруженный склеротической костью. А — Очаг не виден в передне-задней проекции, а Б — именно в боковой проекции.
А. 14-летний мужчина с болью в ноге; и Б, 18-летняя женщина с болью в бедре.На простом снимке очаг кальцинирован и окружен повышенной плотностью кости.
В зависимости от места происхождения различают три типа рентгенографических признаков; кортикальный, медуллярный и поднадкостничный [ 1 ]. Кортикальная остеоид-остеома — классический тип заболевания, состоящий из небольшого центрального очага, обычно рентгенопрозрачного, связанного с перифокальной плотной костью. Эти поражения могут иметь высокую плотность, и для визуализации очага могут потребоваться чрезмерные воздействия или методы разреза тела. Плотность (склероз) преимущественно прилегает к очагу [ 1 ].
Медуллярный тип поражает шейку бедренной кости, позвонки и мелкие кости (случай 2). Этот тип из-за формирования остеосклероза в отдаленной точке не способен вызвать периферическое реактивное костеобразование. Если реактивного костеобразования нет, обнаружение очага может быть затруднено, особенно в позвоночнике и шейке бедренной кости. В таком случае может оказаться полезным радионуклидное сканирование костей [ 1 ]. Третий тип остеоид-остеомы — это поднадкостничный тип, который чаще всего возникает во внутрисуставной части костей и его может быть трудно обнаружить (случай 3), что приводит к задержке лечения [ 1 ]. Компьютерная томография (КТ) имеет большое значение, когда на простых снимках нет данных о локализации очага остеоид-остеомы.Рисунок 4). КТ-характеристики остеоид-остеомы:
17-летний мужчина обратился с болью в бедре.А. На обзорных рентгенограммах видно утолщение эндоста в дистальной части бедренной кости. Определенных рентгенопрозрачностей нет.
Б — КТ выявляет утолщение эндоста и рентгенопрозрачность коры головного мозга.
1) Зона низкой плотности круглой или овальной формы, называемая очагом.
2) Зона высокой плотности внутри очага: от минимальной до обширной.
3) Реактивный периферический склероз или периостальная реакция.
Остеоид-остеома позвоночника обычно возникает в области нервной дуги и может вовлекать суставной отросток и апофизарные суставы. Поражения, возникающие в этой области, может быть трудно диагностировать, но ключом к постановке диагноза может быть болезненный сколиоз [ 1 ]. Для обнаружения аномалий мягких тканей и костного мозга рядом с остеоид-остеомой магнитно-резонансная томография (МРТ) считается более чувствительной, чем компьютерная томография [ 7 ]. МРТ — надежный метод визуализации очага. Очаг может проявляться по-разному на МРТ в зависимости от его относительного расположения по отношению к коре. Чем ближе поражение расположено к медуллярной зоне, тем больше роль МРТ в распознавании очага по сравнению с КТ [ 8 ].
Как правило, по сравнению с МРТ, КТ более специфична для обнаружения очага. Сигналы при МРТ различаются в зависимости от отека костного мозга, очага и мягких тканей [ 7 ]. Тем не менее, очаг имеет преимущественно промежуточную интенсивность сигнала на Т1-взвешенных изображениях и от средней до высокой интенсивности сигнала на Т2-взвешенных изображениях (Рисунок 5) [ 9 ].
25-летний мужчина жалуется на боль в середине бедра.А: КТ средней части бедра. Нидус виден в медулярной области только на одном из срезов.
B: МРТ того же пациента выявляет отчетливый очаг гиперсигнала в медулярной области в последовательности T2-W на нескольких срезах.
Если реактивная кость не видна, очаг может быть трудно обнаружить, и радионуклидное сканирование полезно для выявления поражения (Рисунок 6) [ 1 ]. Обнаружение признака двойной плотности на радионуклидном сканировании костей является диагностическим признаком остеоид-остеомы и помогает локализовать очаг. Также полезно дифференцировать очаг остеоид-остеомы и остеомиелита [ 2 ]. Мы попытались рассмотреть рентгенологические особенности и клинические симптомы этого заболевания в 44 случаях с патологоанатомическим диагнозом остеоид-остеома.
28-летний мужчина обратился с болью в бедре.А. На обзорных рентгенограммах в коре и мозговом веществе не выявлено патологий, таких как очаг или периферическая склеротическая реакция.
B: сканирование технеция демонстрирует повышенное поглощение в области очага (стрелка). Биопсия указанного образования подтвердила диагноз остеоид-остеома.
Поскольку целью этой оценки, в которой было обследовано 45 пациентов, является оценка и представление различных рентгенологических особенностей остеоид-остеомы в зависимости от ее кортикального, поднадкостничного или медуллярного расположения кости, мы сочли достаточным представить пять пациентов, у которых были особые радиологические проявления.
2.1. Дело 1
20-летняя женщина обратилась с жалобами на боль в правом бедре, иррадиирующую в колено, возникшую год назад. Боль усиливалась по ночам, разбудила ее и уменьшилась от асприна, но через некоторое время боль снова усилилась. Обзорная рентгенограмма бедра не выявила отклонений, но КТ выявила склеротическое поражение с центральным очагом в коре головного мозга. При сканировании радионуклидов в том же регионе было обнаружено повышенное поглощение. Этот тип остеоид-остеомы является наиболее распространенным типом с точки зрения локализации поражения (кортикальная) и пораженной кости (бедренная) (Рисунок 7).
20-летняя женщина обратилась с жалобой на боль в правом бедре в течение года.А. Обзорная рентгенограмма бедра не выявила отклонений.
Б — КТ бедра показывает склеротическое поражение с центральным очагом в коре головного мозга.
C. При сканировании радионуклидов в той же области было обнаружено повышенное поглощение (стрелка).
2.2. Случай 2
У 28-летнего мужчины, перенесшего операцию по удалению опухоли около года назад, наблюдался повторный отек и рецидив поражения. Год назад опухоль поразила проксимальную фалангу второго пальца правой руки. Патологоанатомическая оценка соответствовала остеоид-остеоме. На этот раз больной жаловался на повторный отек того же места, что и 3 месяца назад. Поражение рецидивировало в форме остеолитического поражения (медуллярного типа), сопровождающегося болезненностью и ограничением движений. Резекция опухоли подтвердила рецидив опухоли (Рисунок 8).
28-летний мужчина с болью в руке.А — на обзорных рентгенограммах видна остеоид-остеома дистальной части фаланги (медуллярный тип) в переднем и боковом проекциях.
2.3. Случай 3
20-летний мужчина обратился с жалобами на боль в левой лодыжке в течение 2 лет, сопровождающуюся отеком этой области. Боль возникала обычно ночью. Рентгенограмма левой лодыжки (вид сбоку) выявила признаки поднадкостничной остеоид-остеомы и образование мягких тканей вокруг поражения. (Рисунок 9).
17-летний мужчина обратился с болью в стопе.На простом снимке видна поднадкостничная остеоид-остеома таранной кости, которая часто представляет собой круглую массу мягких тканей, прилегающую к кости.
2.4. Случай 4
22-летний мужчина обратился с жалобами на постоянные боли в пояснице в течение 5 месяцев. Боль не зависит от движения и активности. Рентгенография выявила склеротический участок левой ножки позвонка L1 и сколиоз в грудопоясничном отделе. КТ также показала остеолитическое и остеобластическое поражение в том же месте. Кроме того, на МРТ T1W наблюдалась очаговая низкая интенсивность сигнала, окруженная мягкотканным компонентом, замещающим ножку позвонка L1 с левой стороны в аксиальных срезах. В прилегающей кости наблюдалась диффузная низкая интенсивность сигнала из-за отека. Радионуклидное сканирование выявило повышенное поглощение в том же месте (Рисунок 10). Все вышеперечисленные данные наводили на мысль как об остеоид-остеоме, так и остеобластоме; хотя хирургическая резекция поражения подтвердила диагноз остеоид-остеомы.
22-летний мужчина с жалобами на непрерывную боль в пояснице в течение 5 месяцев.А: Рентгенограмма выявила склеротическую область в левой ножке позвонка L1 и сколиоз в грудопоясничном отделе.
B: КТ поясничного отдела выявила остеолитические и остеобластические поражения в ножке позвонка L1.
В — МРТ с Т1-взвешиванием продемонстрировало очаг низкой интенсивности сигнала, окруженный мягкотканным компонентом, замещающим ножку позвонка L1 с левой стороны в аксиальных срезах. В прилегающей кости наблюдалась диффузная низкая интенсивность сигнала из-за отека.
2.5. Случай 5
Мальчик 9 лет обратился с жалобами на боли в правой голени, которые в течение года усиливались ночью. При физикальном осмотре в средней части голени было обнаружено твердое образование костной консистенции.
При рентгенографии отмечена плотная периостальная реакция в медиальной части большеберцовой кости без выраженного очага. КТ выявила очаг вместе с заметной периостальной реакцией вокруг очага поражения (Рисунок 11). Таким образом, остеоид-остеома может проявляться как периостальная реакция при обзорной рентгенографии.
Девятилетний мальчик с жалобами на боль в правой голени.А. На прямой и боковой рентгенограмме правой голени выявлена плотная периостальная реакция в медиальной части большеберцовой кости без какого-либо явного очага.
Б — КТ средней части правой голени выявил очаг вместе с периостальной реакцией вокруг очага поражения.
Мы ретроспективно изучили истории болезни пациентов с патологоанатомическим диагнозом остеоид-остеома в отделении радиологии больницы Имама Резы Мешхеда Университета медицинских наук Ирана в течение одного года. В исследование были включены 44 пациента с остеоид-остеомой. Обычные пленки, КТ-изображения и изотопное сканирование были доступны всем пациентам. Только в пяти из этих случаев также была проведена МРТ.
3.1. Клинические симптомы
В этой серии случаев был 31 пациент мужского пола и 14 женщин, поэтому диагноз у мужчин встречался в два раза чаще, чем у женщин. Средний возраст пациентов с остеоид-остеомой составил 17 лет (диапазон 8-35 лет). Распределение заболевания в разные десятилетия жизни показано на рис.Рисунок 12. Во втором десятилетии наблюдалась самая высокая распространенность – 25 пациентов.
Распределение пациентов по десятилетиям возраста на момент обращения
В большинстве случаев рентгенологические проявления наблюдались одновременно с клиническими симптомами. У других боль предшествовала рентгенологическим признакам.
Боль была единственным симптомом у этих пациентов, который первоначально был легким и периодическим, но позже стал постоянным и сильным. Боль возникает, как правило, ночью. Только у одного пациента не было зарегистрировано ночных болей. Благоприятный ответ на аспирин и НПВП наблюдался в 41 случае, и только у трех пациентов наблюдался относительный ответ. Десять пациентов отметили иррадиирующую референтную боль.
Дополнительными клиническими симптомами были отек пораженного участка, наблюдаемый при клиническом обследовании девяти пациентов, и ограничение движений у пяти. Боль усиливалась при физической активности у шести пациентов и уменьшалась при физической активности в 38 случаях (Таблица 1).
Средняя продолжительность боли, о которой сообщали пациенты, составляла примерно 17 месяцев, в диапазоне от 3 недель до 7 лет от начала заболевания. Рецидив заболевания после хирургической резекции диагностирован у трех больных в этом же регионе. В одном случае поражение первоначально было диагностировано в бедренной кости, но после резекции было обнаружено второе поражение в лобковом симфизе. Что касается анатомического расположения опухоли, то чаще всего поражались шейка бедренной кости и проксимальный отдел большеберцовой кости в 19 и 9 случаях соответственно. Другие пораженные участки (в порядке распространенности) включали плечевую кость, таранную кость, позвоночник, фаланги, вертлужную впадину и лобковый симфиз (Рисунок 13).
Остеоидная остеома, анатомические места возникновения у 44 пациентов
3.2. Радиологические особенности
3.2.1. Обычная пленка
В нашей серии у 35 пациентов был кортикальный тип, шесть случаев располагались в медуллярной зоне и три имели поднадкостничную остеоид-остеому (Рисунок 14).
Распространение заболевания в зависимости от места происхождения
3.2.2. Компьютерная томография
Во всех случаях очаг визуализировался. В одном случае, когда поражение располагалось на уровне позвонка Т8, КТ показала только повышенную плотность в ножке позвонка с подозрением на очаг. Кальцификация и оссификация внутри очага были либо незначительными, либо отсутствовали в 15 случаях. В двух случаях, когда остеоид-остеома располагалась внутри позвонка, присутствовал сколиоз и поражение визуализировалось как увеличение плотности ножки (один грудной и один поясничный позвонок). В случае поражения L1 повышенная плотность наблюдалась как в теле, так и в ножке позвонка.
3.2.3. МРТ
Очаг был виден у четырех из пяти пациентов, которым также была проведена МРТ. У пятого пациента очаг был виден только на КТ. Однако во всех пяти случаях при МРТ четко выявлялись изменения сигнала, связанные с отеком костного мозга и мягких тканей, прилегающих к очагу поражения.
3.2.4. Радионуклидное сканирование костей
Мы использовали этот признак вместе с заключением патологоанатомического исследования для подтверждения диагноза остеоид-остеомы, который был положительным у всех пациентов (Рисунок 15).
Наконец, остеоид-остеома известна как доброкачественная опухоль кости, которая в два раза чаще встречается у мужчин, чем у женщин. Наибольшая заболеваемость приходится на второе десятилетие жизни. Ночная боль, облегчаемая аспирином, является наиболее частым симптомом. Что касается места возникновения, существует три типа остеоид-остеомы; а именно: кортикальный (классический тип), медуллярный и поднадкостничный.
Наиболее распространенными местами поражения являются шейка бедренной кости и проксимальный отдел большеберцовой кости. Это заболевание костей выявляется с помощью обычной пленки, КТ, МРТ и радионуклидного сканирования костей, каждое из которых имеет разные характеристики при диагностике этого поражения. МРТ более чувствительна в диагностике аномалий костного мозга и мягких тканей, прилегающих к очагу поражения. Чем ближе очаг к медуллярной зоне, тем выше роль МРТ в обнаружении очага по сравнению с КТ. С другой стороны, КТ более специфична в обнаружении очага поражения.
https://microsievert.ru/wp-content/uploads/2024/04/13244_2021_978_Fig10_HTML.jpg457685Андрей Тихмяновhttps://microsievert.ru/wp-content/uploads/2024/06/Untitled-1.pngАндрей Тихмянов2024-04-08 21:44:102024-04-08 21:44:10Рентгенологические особенности остеоид-остеомы: иллюстрированный обзор
В этой статье показана нормальная и вариантная анатомия коронарных артерий и нижележащих сердечных вен с использованием 64-MDCT-сканера высокого разрешения. Знание анатомии коронарных артерий и расположенных ниже сердечных вен, отображаемых с максимальной интенсивностью и объемными проекциями, важно для правильной интерпретации изображений коронарной КТ-ангиографии.
Введение
КТ-ангиография с контрастным усилением (КТА) коронарных артерий становится возможной, поскольку временное и пространственное разрешение улучшается с появлением MDCT. Обнаружение, характеристика и количественная оценка ишемической болезни сердца, а также элегантное разграничение анатомии коронарных артерий возможны с использованием 2D-мультиплоскостного реформирования (MPR), 3D-проекции максимальной интенсивности (MIP) и трехмерных методов постобработки с объемной визуализацией. Знакомство с анатомией коронарных артерий и вен, а также анатомическими вариантами важно для правильной интерпретации изображений. Эта анатомия и артериальные варианты были хорошо описаны с использованием традиционных ангиографических методов [ 1 , 2 ]. Тем не менее, поперечный характер КТ имеет то преимущество, что позволяет более точно отображать пространственные взаимоотношения анатомии коронарных артерий и вен по отношению к сердечным структурам. В этой статье эта анатомия освещается с помощью различных методов MIP и объемной визуализации (рис. 1 , 2A , 2B , 2C , 2D , 3A , 3B , 3C , 3D , 4A , 4B , 5A , 5B , 6 , 7A , 7B , 7С , 8А , 8Б , 8С , 9 , 10 , 11 , 12А , 12Б , 12С , 13 , 14А , 14Б , 15А , 15Б , 16А , 16Б , 17А , 17Б , 18А , 18Б , 18С ).
Предметы и методы
Протоколы коронарной КТА обычно визуализируют сердце, используя краниально-каудальную съемку [ 3 ]. Тем не менее, каудально-краниальное сканирование применяется, когда желательна сопутствующая визуализация легочных артерий у пациентов с атипичной болью в груди [ 4 ]. Мы описываем оба этих протокола, потому что анатомия сердечных вен может отображаться с разной степенью усиления в зависимости от типа сбора данных.
Пациенты, принимавшие участие в нашем исследовании, были обследованы после того, как наблюдательный совет учреждения одобрил исследование, которое соответствует Закону о переносимости и подотчетности медицинского страхования, и после того, как они предоставили письменное информированное согласие. Пациенты были набраны с октября 2004 г. по июнь 2005 г.
Визуализация выполнялась на 64-срезовом (32 детектора) MDCT-сканере (Sensation Cardiac 64, Siemens Medical Solutions) после проведения премедикации пациенту пероральным атенололом (50–100 мг), метопрололом внутривенно (болюсно по 5–10 мг, до 50 мг) или и то, и другое. Для венозного доступа использовался внутривенный катетер 20-го калибра для верхней конечности. Сублингвально вводили нитроглицерин (0,4 мг) для индукции коронарной вазодилатации. Время болюса измеряли в средней части восходящей аорты с помощью 20 мл йодиксанола (320 мгI/мл [Visipaque, GE Healthcare]), вводившегося со скоростью 5 мл/с, с последующим промыванием 50 мл физиологического раствора, также вводившегося со скоростью 5 мл/с). Альтернативно, отслеживание болюса можно использовать для запуска сбора данных, разместив интересующую область над средней частью восходящей аорты и установив порог запуска на 160 ч выше базовой линии.
Односекторные реконструкции коронарных артерий выполнялись на 65% и 35% длины RR, а затем были модифицированы для другого начала фазы, если были артефакты движения. Реконструкции выполнялись на рабочей станции (Wizard, Siemens Medical Solutions), а затем переносились на другую рабочую станцию (TeraRecon, TeraRecon) для MPR и MIP.
Случаи были отобраны для демонстрации нормальной анатомии коронарных артерий и вен. MIP были получены с использованием различной толщины (5–30 мм) и отображались с использованием стандартных ориентаций (правая передняя косая, левая передняя косая, аксиальная) с каудальной или краниальной ангуляцией или без нее. Объемные изображения также были получены с использованием различных ориентаций.
Краниально-каудальный снимок
Коронарная КТА выполнялась через 5 секунд после пиковой плотности аорты; 100 мл йодиксанола (Визипак) вводили со скоростью 5 мл/с, после чего следовало промывание 50 мл физиологического раствора со скоростью 5 мл/с [ 3 ]. Ретроспективное ЭКГ-стробирование использовали со следующими параметрами: коллимация — 0,6 мм; время вращения трубки – 0,33 секунды; напряжение трубки – 120 мВ; эффективные мАс – 750–850; шаг — 0,2; и время сканирования 10–12 секунд.
Охват сканирования был от уровня киля до низа сердца. Поле зрения реконструкции, толщина среза и шаг реконструкции, гладкое ядро были следующими: 15–22 см; 0,6 и 0,3 мм соответственно; и B25f. Импульсная ЭКГ обычно применяется для модуляции тока трубки и необходима для снижения лучевой нагрузки [ 5 ].
Каудально-краниальный сбор
Для каудально-краниального исследования использовался протокол подготовки пациента и сканирования, аналогичный описанному в предыдущем разделе. Однако введение контрастного вещества выполнялось с большим объемом контрастного материала по двухфазному протоколу: 100 мл йодиксанола вводили со скоростью 5 мл/с, затем 30 мл йодиксанола со скоростью 3,0 мл/с, а затем промывали 50 мл физиологического раствора через 3 секунды. мл/с. Дополнительный объем контрастного материала привел к увеличению времени введения контрастного вещества, чтобы обеспечить адекватное усиление легочных артерий [ 4 ]. В результате полосчатые артефакты, исходящие из верхней полой вены и правого предсердия, присутствовали в 37 (88%) из 42 исследований; однако эти артефакты мешали визуализации правой коронарной артерии (ПКА) только в одном (2,4%) из 42 случаев [ 4 ].
Грудная клетка от основания легких до чуть выше (1–2 см) дуги аорты сканировалась за 12–15 секунд (без пульсации ЭКГ), но сканирование может включать всю грудную клетку при применении пульсации ЭКГ. Как и при краниально-каудальном исследовании, пульсация ЭКГ необходима для снижения радиационного воздействия [ 5 ]. Поле зрения реконструкции, толщина среза и приращение реконструкции, а также ядро коронарных артерий были аналогичны таковым при краниально-каудальном исследовании. Однако были также получены реконструкции с большим полем зрения [ 4 ] для отображения легочных артерий, грудной аорты, легких и мягких тканей грудной клетки.
Нормальная анатомия коронарных артерий
Правая и левая коронарные артерии берут начало от правого и левого синусов Вальсальвы корня аорты соответственно. Задний синус редко дает начало коронарной артерии и называется «некоронарным синусом». Расположение пазух является анатомически неправильным: правая пазуха на самом деле расположена спереди, а левая пазуха — сзади. Распределение коронарных артерий в миокарде несколько вариабельно, но правая коронарная артерия (ПКА) почти всегда кровоснабжает правый желудочек (ПЖ), а левая коронарная артерия (ЛКА) кровоснабжает переднюю часть межжелудочковой перегородки и переднюю стенку желудочка. левый желудочек (ЛЖ). Сосуды, снабжающие оставшуюся часть ЛЖ, различаются в зависимости от коронарного доминирования, что мы объясним позже.
Анатомия RCA
ПКА начинается из правого коронарного синуса несколько ниже места начала ЛКА. После выхода из аорты ПКА проходит справа и сзади от легочной артерии, а затем выходит из-под ушка правого предсердия и направляется в переднюю (правую) атриовентрикулярную (АВ) борозду (рис. 1 и 2А , 2Б) . , 2В , 2Д ). Примерно в половине случаев ветвь конуса является первой ветвью ПКА (рис. 3А , 3Б , 3В , 3D ). В другой половине ветвь конуса имеет отдельное от аорты начало. Ветвь конуса всегда идет вперед и снабжает легочный отток. Иногда ветвь конуса может быть ветвью ЛКА ( рис. 3D ), иметь общее происхождение с ПКА или иметь двойные или множественные ветви.
В 55% случаев синоатриальная узловая артерия (рис. 3В , 3Г и 4А ) является следующей ветвью ПКА, возникающей в пределах нескольких миллиметров от начала ПКА. В остальных 45% случаев синоатриальная узловая артерия отходит от проксимальной левой огибающей артерии (LCx) (рис. 4Б и 11 ). В любом случае синоатриальная узловая артерия всегда направляется к притоку верхней полой вены вблизи краниального отдела межпредсердной перегородки. По мере того как ПКА проходит внутри передней АВ-бороздки, она направляется вниз к задней (нижней) межжелудочковой перегородке. При этом ПКА отдает ветви, кровоснабжающие миокард ПЖ; эти ветви называются «маргиналами ПЖ» или «острыми маргиналами» (рис. 5А , 5Б ). Они снабжают переднюю стенку правого желудочка. После того, как она отходит от краев ПЖ, ПКА продолжается по периметру правых отделов сердца в передней АВ-бороздке и направляется к диафрагмальной части сердца.
Коронарное доминирование
Артерия, кровоснабжающая заднюю нисходящую артерию (ЗДА), и заднелатеральную ветвь определяют коронарное доминирование. Если ПДА и ППЛ возникают из ПКА, то систему называют праводоминантной (80–85% случаев) (рис. 6 и 7А , 7Б , 7В ). В этом случае ПКА кровоснабжает нижнеперегородочный и нижний сегменты ЛЖ [ 6 ]. Если ОАП и ПЛБ возникают из артерии LCx, то систему называют левой доминантной (15–20% случаев) (рис. 8А , 8Б , 8В и 17А , 17Б ). В этом случае LCA снабжает нижнеперегородочный и нижний сегменты ЛЖ. Если ОАП происходит из ПКА, а ПЛБ — из артерии LCx, система является кодоминантной (около 5% случаев) ( рис. 9 ).
В леводоминантной и кодоминантной системах артерия LCx продолжается в задней AV-бороздке как артерия левой AV-бороздки и дает начало левой PLB. При доминировании слева ОАП является последней ветвью артерии АВ-бороздки. Дистальная RCA делится на PDA и PLB в праводоминантной системе. Недоминирующая система обычно заметно меньше по калибру, чем доминирующая. Эту разницу в калибре можно использовать как дополнительный ключ к определению того, является ли анатомия коронарной артерии правосторонней или леводоминантной. Обычно возникающая непосредственно дистальнее начала ОАП, АВ-узловая артерия ( рис. 6 ) может быть распознана по ее прямому вертикальному ходу от дистальной части ПКА. В случаях левого доминирования ветвь АВ-узла имеет аналогичный внешний вид и расположение, но возникает проксимальнее (левого) ОАП.
Анатомия LCA
LCA обычно выходит из левого коронарного синуса как левая главная (LM) коронарная артерия ( рис. 10 ). LM коронарная артерия короткая (5–10 мм), проходит слева и сзади от легочного ствола и раздваивается на левую переднюю нисходящую (LAD) и LCx артерии ( рис. 11 ). Иногда коронарная артерия LM раздваивается на артерию ПНА, артерию LCx и промежуточную ветвь артерии (рис. 12А , 12В , 12С ).
Артерия Рамус Интермедиус
Наиболее частым изменением анатомии LCA является наличие трифуркации LM-коронарной артерии. В этом случае коронарная артерия LM раздваивается на артерию LAD, артерии LCx и артерию между ними, называемую артерией «ramus intermedius» (рис. 12A , 12B , 12C ). Сама ветвь промежуточной артерии имеет переменное ветвление. Ramus intermedius может располагаться в виде диагональной или тупой краевой ветви в зависимости от того, снабжает ли она переднюю или латеральную стенку соответственно.
ПМЖВ Артерия
ПМЖВ-артерия ( рис. 13 ) проходит в передней межжелудочковой борозде вдоль межжелудочковой перегородки. Обычно артерия ПМЖВ может быть встроена в переднюю часть миокарда, образуя вышележащий миокардиальный мост (рис. 14А , 14В ). Миокардиальный мостик чаще выявляется на КТ, чем описано в литературе по коронарографии. Большинство миокардиальных мостов протекают бессимптомно, хотя редко миокардиальные мосты могут быть связаны с ишемией. ПМЖВ-артерия имеет ветви, называемые «перфораторами перегородки» (рис. 14А , 14В ), которые снабжают переднюю межжелудочковую перегородку. Он также имеет диагональные артерии (рис. 15А , 15В ), которые проходят через переднюю стенку ЛЖ и снабжают ее. Диагонали и перфораторы перегородки нумеруются последовательно от проксимального к дистальному (т. е. D1, D2, S1, S2).
LCx Артерия
Артерия LCx (рис. 16А , 16В , 17А , 17В и 2А , 2В , 2С , 2D , 4В , 8А , 8В , 8С , 11 , 12А , 12В , 12С , 15А , 15В ) проходит в задней АВ-бороздке аналогично. по ходу РКА на противоположной стороне. Основные ветви артерии LCx состоят из тупых краев (ОМ) (рис. 16А , 16Б и 17А , 17Б ). Ветви ОМ кровоснабжают боковую стенку ЛЖ. Они нумеруются последовательно от проксимального к дистальному (т. е. OM1, OM2, OM3).
Аномалии происхождения RCA
РКА может иметь аномальное происхождение. Важно знать об этой возможности, чтобы избежать неправильной интерпретации коронарной КТА. Обычно аномальное происхождение ПКА происходит из левого коронарного синуса Вальсальвы с последующим ходом между корнем аорты и выносящим трактом правого желудочка. Описание этих аномалий выходит за рамки данной статьи; однако эта и другие аномалии происхождения RCA описаны Kim et al. [ 7 ]. Пример аномального происхождения РКА показан на рисунках 18А , 18Б , 18В .
Аномалии происхождения LCA
ЛКА и его ответвления могут иметь аномальное происхождение. Важно знать об этой возможности, чтобы избежать неправильной интерпретации коронарной КТА. Некоторые из этих аномалий связаны с повышенным риском внезапной смерти или остановки сердца ( рис. 18C ). Описание этих аномалий выходит за рамки данной статьи; однако аномалии происхождения LM, LAD и LCx рассмотрены Kim et al. [ 7 ].
Коронарная венозная анатомия
Большая сердечная вена (рис. 4Б и 16А ) расположена в передней межжелудочковой борозде, рядом с ПМЖВ-артерией. Она направляется вверх от верхушки и впадает в коронарный синус. Средняя сердечная вена (рис. 7А и 7В ) также начинается на верхушке, но идет вверх в нижней межжелудочковой борозде, рядом с ОАП. Между ними находится переменная заднелатеральная вена ( рис. 7C ), дренирующая латеральную стенку ЛЖ. Коронарный синус (рис. 7А , 7С , 16А и 16В ) представляет собой широкую вену, которая проходит в задней AV-бороздке, сопровождая артерию LCx и артерию AV-бороздки. Она впадает в правое предсердие и впадает в большую сердечную вену проксимально и среднюю сердечную вену дистально.
Система отчетности об ишемической болезни сердца
В попытке стандартизировать отчетность по ишемической болезни сердца специальный комитет Американской кардиологической ассоциации разработал номенклатуру и далее разделил основные коронарные артерии на проксимальный, средний и дистальный сегменты [ 8 ].
Проксимальный сегмент ПКА располагается от устья на половине расстояния до острого края сердца. Средний сегмент ПКА — это ПКА от конца вышеуказанного сегмента до острого края сердца. Дистальный сегмент ПКА — это ПКА, проходящий вдоль правой АВ-бороздки от острого края до начала ОАП.
Проксимальный сегмент ПМЖВ находится проксимальнее и включает начало первого крупного перфоратора перегородки. Средний сегмент ПМЖВ представляет собой артерию ПМЖВ, расположенную непосредственно дистальнее начала первого крупного перфоратора перегородки, который простирается до точки, где артерия ПМЖВ образует угол (косой вид спереди справа). Этот угол часто, но не всегда, близок к началу второй диагонали. Если этот угол или диагональ невозможно определить, этот сегмент заканчивается на половине расстояния от первого крупного перфоратора перегородки до вершины. Апикальный сегмент ПМЖВ представляет собой терминальную часть артерии ПМЖВ, которая начинается в конце предыдущего сегмента и простирается до верхушки или за ее пределы.
Проксимальный сегмент LCx является основным стволом артерии LCx от ее начала от LCA до начала тупого края включительно. Дистальный сегмент LCx представляет собой артерию LCx дистальнее начала тупого края и проходит вдоль задней AV-бороздки или рядом с ней.
Заключение
КТА коронарных артерий становится важным инструментом визуализации для оценки коронарных артерий. Знание КТ-анатомии коронарной артерии и различных аномалий коронарных артерий имеет важное значение для точной диагностики и правильного лечения пациентов.
Мужчина, 37 лет, из Сомали, военная травма после взрыва в Сомали в 2010 году привела к открытому перелому бедра. Больной лечился консервативно. Обратился в клинику в мае 2012 г. по поводу дренирования полости дистальной части бедренной кости. Оперирован.
☠Сейчас снова обратился в клинику так как 2 недели назад почувствовал отек, болезненность дистального медиального отдела бедренной кости. СРБ 180, СОЭ 140
Операция, октябрь 2012 г., с иссечением полости и секвестрации кости, посев раны выявил S aures, отсутствие туберкулеза, антибиотики в инфекционной клинике до нормализации СРБ и СР. Отсутствие осложнений после оперативного вмешательства
Остеомиелит (ОМ) определяется как инфекция костного мозга и прилегающих костных структур с потенциальным распространением окружающих мягких тканей. ОМ имеет различную визуализационную картину и поэтому часто имитирует другие заболевания костей [1]. Цель этого графического обзора — обсудить различные клинические и визуализирующие особенности ОМ, уделяя особое внимание тем, которые помогают поставить уверенный диагноз.
Общая клиническая картина
Обычно можно выделить три клинические стадии (острую, подострую и хроническую), хотя в клинической практике эти стадии могут частично пересекаться.
Пути заражения могут различаться на разных клинических стадиях. У детей преобладающим путем заражения является гематогенное распространение, тогда как у взрослых гораздо чаще встречается распространение из смежных источников, прямое заражение или послеоперационное заражение.
Кроме того, клинические проявления также могут различаться в зависимости от возраста пациентов. В частности, у младенцев клинические проявления часто более выражены, включая местный отек, боль, ограничение движений или отказ двигать пораженной конечностью, особенно в острой фазе. Напротив, у взрослых клиническое начало часто более незаметное. У детей наиболее распространенными местами инфекции являются трубчатые кости, такие как большеберцовая и бедренная кости, тогда как у взрослых чаще всего поражается осевой скелет.
Лабораторные данные обычно показывают повышение уровня С-реактивного белка (СРБ) и скорости оседания эритроцитов (СОЭ), особенно при остром остеомиелите у детей, тогда как количество лейкоцитов может быть нормальным. Эволюция уровней СРБ коррелирует с ответом на терапию. Посевы необходимы для точного лечения, но в острых случаях только половина посевов крови дает положительный результат, что затрудняет постановку диагноза [2,3,4].
Патогенез и классификация
Существуют различные пути заражения, из которых наиболее частым является гематогенное распространение микроорганизма. В 95 процентах случаев микроорганизмом является Staphylococcus aureus, но ответственность за это могут нести и другие микроорганизмы. [2] Другие потенциальные пути заражения включают распространение из соседнего источника инфекции (рис. (Рисунок 1а),1а), открытые переломы с прямой имплантацией и/или наличием инородного тела или послеоперационной инфекции из-за инструментов (Рисунок 1б). Хронический СО также связан с сосудистой недостаточностью (например, вследствие сахарного диабета), приводящей к хроническим ранам. В этой рукописи основное внимание будет уделено гематогенному распространению остеомиелита. Дальнейшее детальное обсуждение других путей распространения выходит за рамки данного графического обзора.
Основные пути распространения инфекции. (a) Инфекция распространяется от смежных инфицированных портновских косточек. Аксиальное Т1-взвешенное изображение (WI) с подавлением жира (Fat-Sat) после введения контрастного вещества с гадолинием показывает воспаленный бурсит (белая стрелка) с прилегающим усилением дистальной части 5th Послеоперационное распространение инфекции. Послеоперационная инфекция позвоночника. Сагиттальный T1–WI с Fat–Sat после введения гадолиниевого контраста. Обратите внимание на ламинэктомию L4 и L5 с установкой межпозвонковых кейджей. Обширное усиление L5 и S1 с усилением края межпозвоночной клетки L5–S1 в соответствии с послеоперационным спондилодисцитом.(b) плюсневая кость (звездочки).
Характер кровоснабжения диафиза, метафиза и эпифиза зависит от возраста больного. Тщательное знание этих различных закономерностей позволяет понять различные рентгенологические закономерности СО у детей и взрослых (рис.(Фигура 2)2) [5].
Схематическое изображение васкуляризации трубчатой кости, модифицированное по Резнику. [2]. (a) Схематическое изображение васкуляризации трубчатой кости у детей младше 18 месяцев. Различают метафизарные и трансфизарные кровеносные сосуды, допускающие метафизарный и эпифизарный путь заражения. (b) Схематическое изображение васкуляризации длинных трубчатых костей у детей в возрасте от 18 месяцев до 16 лет. Эпифиз имеет свои питательные сосуды (вены и артерии), тогда как метафиз и диафиз имеют одни и те же сосуды. В организме образуется естественный барьер, препятствующий распространению остеомиелита на эпифизы и суставы. Таким образом, у детей этой возрастной группы наблюдается начальный и преобладающий метафизарный очаг инфекции. (c) Схема васкуляризации длинной кости у взрослых после закрытия пластинки роста. С 16 лет восстановление трансфизарной васкуляризации может вызвать потенциальное эпифизарное распространение инфекции.
Хотя традиционно зона роста считается барьером для эпифизарного распространения инфекционного очага у детей из-за специфической возрастной васкуляризации (рис.3а–б), этот барьер оказался проницаемым при магнитно-резонансной томографии (МРТ), поскольку этот метод более чувствителен к выявлению небольших изменений костного мозга как раннего признака распространения инфекции через пластинку роста
Острый остеомиелит у 2 разных пациентов. Обзорная рентгенограмма (a) и коронарный T2–WI (b) острый остеомиелит проксимального отдела левой плечевой кости. Другой пример ребенка с остеомиелитом проксимального отдела правой плечевой кости (c) на корональном T1–WI с ФС после введения гадолиниевого контраста. Стандартная рентгенография (a) показывает незначительное остеолитическое поражение метафиза и потерю корковых границ медиальной плечевой кости (черная стрелка). Отек окружающего костного мозга (черные стрелки) (b) в большинстве случаев детского остеомиелита ограничивается метафизом. Относительность барьера пластинки роста на МРТ проиллюстрирована на (c) Хотя внутрикостный абсцесс с усилением края (белая стрелка) соответствует основной очаг инфекции расположен в метафизе, также имеется очаговое усиление зоны роста и эпифиза в соответствии с метафизарным пересечением.
Эпифизарный остеомиелит правого колена у детей. Обзорная рентгенограмма (a) дистального отдела бедренной кости показывает рентгенопрозрачное поражение с периферическим склеротическим краем (белая стрелка) в эпифизе дистального отдела бедренной кости. После введения гадолиниевого контраста (корональный T1–Fat–Sat WI, (b) центральная часть поражения не усиливается, тогда как имеется тонкий периферический край усиление (белая стрелка) с умеренным усилением отека окружающего костного мозга.
В редких случаях инфекция распространяется преимущественно через сосудистую циркулу Хантера, снабжающую эпифиз
Результаты визуализации
Результаты визуализации зависят от клинической картины ОМ и возраста больного.
Схематическое изображение последовательных явлений острого остеомиелита. (a) Начальный метафизарный очаг. (b) Латеральное распространение на кору. (c) Кортикальное проникновение и периостальное возвышение. (d) Формирование толстой обертки. (e) Дальнейшее расширение метафизарного очага с обширной оберткой.
Острый детский остеомиелит проксимального отдела плечевой кости по данным УЗИ. Поперечное (а) и продольное (б) ультразвуковые изображения проксимального отдела плечевая кость. Обратите внимание на очаговое истончение кортикального слоя плечевой кости (тонкая белая стрелка) на аксиальных изображениях, что соответствует кортикальному проникновению инфекции, вызывающему поднадкостничное скопление гноя (звездочка). Также наблюдается повышенный допплеровский сигнал (белая стрелка) в синовиальной оболочке длинной головки сухожилия двуглавой мышцы (большая белая стрелка).
Обширная обертка на обзорной рентгенограмме. Переднезадняя и боковая обзорная рентгенограмма показывает обширную обертку (стрелка) в диафизе большеберцовой кости (черные стрелки).
Обсеменение суставов при остеомиелите. Схематические изображения (a) и (b), корональная . Пример на МРТ больного с быстрым распространением инфекционного очага на соседний левый плечевой сустав. Поскольку суставная капсула плечевого сустава располагается ниже зоны роста, метафизарный остеомиелит может легко распространиться через медиальную кору непосредственно в сустав, что приведет к усилению синовиальной оболочки (белая стрелка).(в, г) показан сустав, в котором капсула сустава (синяя) прикрепляется над пластинкой роста. Внесуставная зона роста защищает сустав от раннего заражения. (b) показан сустав, в котором капсула сустава (синяя) прикрепляется под пластинкой роста. Такое внутрисуставное расположение зоны роста может привести к быстрому распространению инфекции на соседний сустав. (a) T1–WI Fat–Sat после контрастирования гадолинием администрация. (d) и аксиальный (c)
Признак жировых шариков на T1–WI. Аксиальный T1–WI показывает жировые шарики (белая стрелка) внутри отека костного мозга большеберцовой кости. Кроме того, имеется кортикальный дефект, также известный как клоака, перфорирующий вентромедиальную кору большеберцовой кости (белый наконечник стрелки).
Типичный абсцесс Броди при подостром остеомиелите большеберцовой кости. Обзорная рентгенограмма (a) Схематическое изображение (b) Аксиальный T1–WI (c) и корональный Fat–Sat T2–WI (d) Обзорная рентгенограмма (a) показывает очаг метафизарного остеолиза с периферическим краем реактивного склероза (черные стрелки). (b) показаны a различные слои абсцесса Броди на T1–WI с патогномоничным признаком полутени на аксиальном T1–WI (c) и гнойное скопление на коронарном отростке Fat-Sat T2-WI (d) . Центральный гной от среднего до низкого SI на T1–WI (белые звездочки на c) и высокого SI на T2–WI (черные звездочки на d). Внутренняя стенка абсцесса состоит из грануляционной ткани высокого SI на T1–WI (знак полутени) (белая маленькая стрелка на c) и промежуточного SI на T2–WI. Внешнее кольцо реактивного склероза низкого SI как на T1–WI (большая белая стрелка на c), так и на T2–WI. Периферический отек костного мозга от среднего до низкого SI на T1–WI и высокого SI на T2–WI (черные стрелки на d).
Хронический остеомиелит на обзорной рентгенограмме бедренной кости. На обзорной рентгенограмме виден диффузный неоднородный остеосклероз правой бедренной кости с очагом повышенного затемнения, представляющим собой некротическую кость или секвестр (черная стрелка). Обычные снимки часто трудно интерпретировать из-за наложения жизнеспособной и некротической кости, каждая из которых имеет разную рентгеноконтрастность.
Хронический остеомиелит пяточной кости. Обзорная рентгенограмма (a) и сагиттальная Fat-Sat T2-WI (b). Обзорная рентгенограмма (a) показывает неоднородный склероз (черные стрелки) в пяточной кости. На МРТ-изображениях виден отек костного мозга (черные стрелки) (b), что указывает на активную инфекцию. Обратите также внимание на наличие небольших микроабсцессов (черные стрелки).
Хронический остеомиелит правой плечевой кости с образованием свища. Обзорная рентгенограмма (синография) (a), корональная (b) и аксиальный (c) Fat–Sat T1–WI после введения гадолиниевого контраста. Синография (a) показывает интрамедуллярное четко выраженное литическое поражение с фестончатым образованием коры. Обратите внимание на наличие катетера в пазухе. Отмечается усиление стенки внутрикостного абсцесса и стенки свища (белая стрелка) (б, в). Изображение предоставлено доктором Х. Деклерком, Дендермонд.
Обзорная рентгенография нечувствительна для оценки костной протяженности поражения в первые десять дней после начала инфекции. Может наблюдаться неспецифический отек мягких тканей. Костные изменения, такие как утолщение надкостницы, потеря трабекулярной архитектуры, остеопения и остеолитическая деструкция, наблюдаются самое раннее через неделю. Тем не менее, обычная рентгенография полезна в качестве исходного исследования для дальнейшего наблюдения и в целях дифференциальной диагностики.
Ультразвук (США) позволяет легко сравнить обе стороны. Это точный и быстрый инструмент для выявления поднадкостничного распространения при остром СО, особенно у детей, из-за неплотного прикрепления надкостницы. Визуализация возвышения надкостницы, скоплений жидкости или абсцессов являются признаками остеомиелита. Абсцесс мягких тканей представляет собой гипоэхогенное скопление в нормальных мышцах с периферическим васкуляризированным краем повышенного сигнала энергетического допплера. УЗИ выявляет эти признаки раньше, чем стандартная рентгенография, и позволяет выполнить биопсию и/или аспирацию под контролем УЗИ (рис.(Рисунок 6)6) [7].
Магнитно-резонансная томография является методом выбора для раннего выявления острого СО. Изменения костного мозга выявляются в течение трех-пяти дней после начала заболевания при помощи Fat-Sat T2-взвешенной визуализации (WI). ОМ может распространяться на сустав в зависимости от положения капсулы сустава по отношению к пластинке роста. Внесуставное расположение пластинки роста не предрасполагает к инфекции сустава, тогда как внутрисуставное расположение пластинки роста может вызвать быстрое распространение на соседний сустав (рис.(Рисунок 8).8). Точно визуализируются разрастание мягких тканей, суставной выпот, абсцессы и свищевые ходы. Патогномоничным признаком острого остеомиелита является наличие интрамедуллярных жировых шариков на Т1–WI. Островки жира высвобождаются некротическими липоцитами, что приводит к высокой интенсивности сигнала (SI) на T1–WI (рис.(Рисунок 9)9) [8,9,].10
Подострый остеомиелит характеризуется наличием абсцесса Броди в метафизе. На обзорной рентгенограмме он обычно проявляется в виде овального рентгенопрозрачного поражения с периферическим склерозом в метафизах длинных костей (рис.(Рисунок 10).10). Форму абсцесса Броди вдоль продольной оси можно объяснить действием силы тяжести. Реже абсцесс Броди может располагаться также в коротких и плоских костях. Представление абсцесса Броди на МРТ (рис.(Рисунок 10)10) характеризуется признаком полутени, состоящим из тонкого периферического края высокого сигнала на T1–WI вокруг скопления гноя в кости. Высокий SI, вероятно, обусловлен грануляционной тканью в стенке абсцесса с макрофагами, нагруженными липидами (рис.(Рисунок 10)10) [10]. После внутривенного введения гадолиниевого контраста этот тонкий васкуляризованный ободок усиливается на [11,12].
Неоднородный остеосклероз и/или образование секвестров (некротическая кость) характерны для хронического остеомиелита на обзорной рентгенографии. Секвестр представляет собой сегмент некротической кости, отделенный от живой кости грануляционной тканью и резорбцией кости. Обычно она плотнее живой кости [13]. В некоторых случаях вокруг некротизированной кости образуется слой новой надкостничной кости или обертки (рисунки (рис.7,7,,11,11,,12).12). На МРТ секвестр гипоинтенсивен на всех импульсных последовательностях. Введение контрастного вещества с гадолинием может выявить клоаку (отверстие в обертке), через которую может выделяться гной, грануляционная ткань и секвестры. Кроме того, усиление свищевых путей, проходящих от кости к поверхности кожи, хорошо демонстрируется на МРТ с контрастным усилением (рис.(Рисунок 13)13) [15].
Сцинтиграфия костей позволяет выявить остеомиелит с высокой чувствительностью. В отсроченной фазе наблюдается повышенная активность в пораженной кости, также может присутствовать поглощение в окружающей кости и/или мягких тканях. Однако специфичность низкая. Множественность легко обнаруживается этим методом [14].
Компьютерная томография (КТ) полезна при оценке хронического остеомиелита в областях со сложной анатомией. КТ может предоставить информацию о наличии секвестров, клоаки, кортикальной деструкции и толщине оболочки. В частности, при оценке образования секвестров КТ более точна, чем обычная рентгенография и МРТ. Кроме того, это полезный метод для игольной биопсии под визуальным контролем и аспирационного материала для микробиологии [14]. Однако из-за дозы радиации использование КТ у детей следует тщательно избегать.
Склерозирующий остеомиелит Гарре представляет собой особый подтип, обычно поражающий нижнюю челюсть, но также может наблюдаться и в длинных костях. Болеют в основном дети и молодые люди. Этиология остается неясной, поскольку посевы, как правило, отрицательны, и подозревается основная вирусная инфекция [16]. Пациенты жалуются на боль, отек и тризм, если поражена нижняя челюсть. На снимке видно выраженное утолщение надкостницы с периферическим реактивным костеобразованием. Лечение поражения нижней челюсти заключается в хирургическом иссечении причинного зуба [17].
Особые подтипы остеомиелита: хронический рецидивирующий мультифокальный остеомиелит (CRMO) и SAPHO.
Определение и патогенез
CRMO определяется как аутоиммунное заболевание с рецидивирующими воспалительными поражениями костей, которое обычно поражает детей [18]. Обычно он поражает медиальную часть ключицы и метафизы длинных костей, но могут поражаться и другие места. У пациентов наблюдается прогрессирующий отек и боль в пораженном участке.
Сочетание синовита, акне, пустулеза, гиперостоза и остита обозначается как SAPHO и рассматривается как аналог CRMO у взрослых. Это воспалительное заболевание неизвестной этиологии, ключевым симптомом которого является остит. Преимущественно поражается осевой скелет с преимущественным поражением грудино-ключичных суставов (двусторонний отек грудино-ключичных суставов) (рис.14) и позвоночник. Крестцово-подвздошные суставы обычно не поражаются.
Типичный признак бычьей головы при SAPHO грудино-ключичного сустава. КТ (корональное переформатированное изображение) (a) демонстрирует склероз рукоятки грудины и медиальной части ключиц, а также эрозии грудино-ключичных суставов. Обратите внимание на типичный симптом быка на сцинтиграфии (b).
Визуализация
Обзорная рентгенография при CRMO первоначально показывает остеолитические поражения, иногда связанные с периостальной реакцией, имеющей вид так называемого «лукового кольца» (рис.15а<а i=0>). На более поздних стадиях развивается прогрессирующий склероз кости. CRMO ключицы обычно поражает медиальную сторону. Рентгенологически активные поражения могут быть клинически бессимптомными, и корреляция между симптомами и активностью при визуализации отсутствует [19].
CRMO медиальной ключицы. Обзорная рентгенограмма (a) показывает экспансивное поражение (черная стрелка) медиальной части ключицы с обширным костным склерозом и солидной периостальной реакцией. Поражение имеет гипоинтенсивный сигнал на корональном T1–WI (b). Обратите внимание на костное расширение поражения за пределы исходного кортикального слоя ключицы (белая стрелка).
При SAPHO в пораженных суставах наблюдаются склероз и эрозии фасеток суставов, которые являются признаками артрита. Визуализируются гиперостоз и энтезопатия [20].
КТ способна обнаружить и оценить степень этих костных изменений с точностью [19].
МРТ показывает отек костного мозга при острых поражениях CRMO с гипоинтенсивным SI на T1–WI и гиперинтенсивным SI на T2–WI (рис.15б<а i=0>). Можно визуализировать трансфизарную инвазию. Прогрессирующий склероз приводит к гипоинтенсивному сигналу как на Т1-, так и на Т2-WI и может наблюдаться при подострых и хронических поражениях. [19]. МРТ является предпочтительным методом визуализации для раннего выявления SAPHO. Отек костного мозга легко визуализируется на T2–WI, что позволяет дифференцировать острые и хронические поражения.
Следует отметить, что, по мнению других авторов, CRMO и SAPHO относятся к спектру спондилоартропатий, а не к инфекциям. Поэтому дальнейшее обсуждение этих объектов выходит за рамки данного графического обзора.
Идти к:
Заключение
Различная визуализационная картина остеомиелита может быть объяснена различными патогенетическими механизмами, участвующими в распространении инфекции, а также возрастной васкуляризацией кости. Стандартная рентгенография по-прежнему является базовым обследованием для последующего наблюдения и дифференциальной диагностики. УЗИ является предпочтительным методом исследования при подозрении на острый остеомиелит у детей или сопутствующий септический артрит. Биопсия и/или аспирация под контролем УЗИ выполняются безопасно и легко. КТ может быть полезна при оценке хронического остеомиелита, особенно в областях со сложной анатомией. КТ может предоставить информацию о наличии секвестров, клоаки, деструкции коры и реактивного образования оберток. Кроме того, его используют для биопсии под визуальным контролем и аспирации инфекционного материала для микробиологического исследования. МРТ является предпочтительным методом раннего выявления остеомиелита. Признак жировых шариков на T1-WI патогномоничен для острого остеомиелита, тогда как признак полутени патогномоничен для абсцесса Броди при подостром остеомиелите. Обязательно сочетание T1- и Fat-Sat T2-WI и визуализации, усиленной гадолинием.
Артроз первого плюснефалангового сустава Hallux rigidus второе по частоте заболевание первого плюснефалангового сустава после вальгусного отклонения первого пальца стопы. Coughlin и Shurnas в 2003 году на основании метаанализа показали что 80% пациентов страдающих рассматриваемым заболеванием имеют проблему с обеими стопами, 98% отмечали наличие заболевания у своих прямых родственников, а 62 % пациентов были женщинами.
Hallux rigidus – ограничение амплитуды движений основной фаланги первого пальца стопы в первом плюснефаланговые сустава в сагиттальной плоскости в следствии развития в нем артрозных изменений. В норме тыльное сгибание в этом суставе составляет примерно 55° -65°. При этом заболевании амплитуда движений снижается до 25° — 30°.
С продолжающейся утратой тыльного сгибание продолжаются и дегенеративные изменения в первом плюснефалнаговом суставе, проявляющиеся ограничением движений, усиление боли, и в итоге к полной неподвижности. В дальнейшем боль отмечается при любой попытке сгибания.
С тех пор как 1887 году Дэвис-Колли впервые использовал термин Hallux limitus, возникали различные теории о формировании этого заболевания. Nilsonne, в 1930 году посчитал, что это заболевания является следствием наличия слишком длинной первой плюсневой кости, которая оказывает давление на основание основаной фаланги. Вызвано оно неспособностью основания проксимальной фаланги производить адекватное тыльное сгибание по голову первой плюсневой кости. Такая особенность первой плюсневой кости называется Metatarsus primus elevatus. Kessel и Bonney также обнаружили, что в небольшом проценте случаев рассекающий остеохондрит головки первой плюсневой кости ведет к формированию дегенеративных изменений в суставе с последующим ограничение тыльного сгибания.
Утверждение о том, что рассекающий остеохондрит в головке первой плюсневой было учавствуетв формировании Hallux rigidus было подтверждено Goodfellow в 1966 году, обнаруживший, что травма первого пальца может нарушить целостность хряща на головке первой плюсневой кости. McMaster в 1978 году более четко определил локализацию такого поовреждения – наиболее часто оно встречается на уровне тыльного края основания основной фаланги первого пальца стопы.
Root с соавт. описал Hallux rigidus как полиэтиологическое заболевание, включающее гипермобильность, возможную иммобилизацию сустава, относительно длинную первую плюсневую кость, Metatarsus primus elevatus, остеоартрит, травма, рассекающий остеохондрит, подагра и ревматоидный артрит. Нервно-мышечные расстройства вызывают гипермобильность или гиперактивность передней большеберцовой мышцы или слабость малоберцовой мышцы, что может приводить к Hallux rigidus, вызывая нестабильность первого луча.
Hallux rigidus может быть результатом биомеханических и динамических нарушений в функции стопы. Сухожилие малоберцовой мышцы, проходя латерально по отношению к кубовидной кости и прикрепляясь к основанию первой плюсневой кости, действует как стабилизатор при ходьбе, чтобы сохранить подошвенное сгибание первого луча во время промежуточной фазе шага. Это позволяет сгибать первый палец в пропульсивной фазе шага.
При чрезмерной пронации в подтаранном суставе сухожилие малоберцовой мышцы теряет свою точку опору на кубовидной кости и поэтому не может стабилизировать первый луч. В результате возникает гипермобильность первого луча с последующим его тыльным сгибанием, что способствует тому, что основание основной фаланги первого пальца упирается в головку первой плюсневой кости. С повторяющимися травмами в этой области, возникает костно-хрящевой дефект. Организм пытается восстановить поврежденный участок образованием новой костной ткани. Это новое формирование кости проявляется тыльным остеофитом на головке первой плюсневой кости, который приводит к дальнейшему соударению и ограничению тыльного сгибания первого пальца стопы.
Hallux rigidus также может возникнуть как осложнение после хирургического вмешательства на первом плюснефаланговом суставе.
Методы обследования пациентов
Всем больным, страдающим артрозом первого плюснефалангового сустава стопы, необходимо проводить комплекс обследований, включаюший в себя клинические, рентгенологические и инструментальные исследования.
3.1. Клинические методики обследования
При клиническом обследовании пациентов выясняют жалобы, анамнез заболевания и жизни, определяют статус по органам и системам, проводят ортопедический осмотр по общепринятой методике (Маркс В.О., 1978) [2++].
Анамнез заболевания. Оценка анамнеза заболевания является очень важной частью обследования пациентов с заболеваниями стоп, так многие врачи считают, что история пациента и его заболевания, в 95% случаев позволяет поставить диагноз уже после единственного разговора (Zier B.G. et al., 1990) [2++]. Информация, полученная от пациента позволяет получить ценные данные, используемые впоследствии, для выбора методики лечения пациента, учитывая его пожелания, запросы и жалобы.
В разговоре с пациентами оценивают симптомы болезни, их прогрессирование, общие факторы организма, влияющие на развитие местных признаков. Тип боли, ее локализацию и длительность, неврологические расстройства, сложности при выборе обуви, ограничение физических нагрузок также оценивали при опросе. Кроме того, у пациентов выясняют получали ли они лечение ранее и если да, то выясняют эффект от проводимой терапии – какая имела положительный результат, а какая нет.
Пациенты с Hallux Rigidus обычно обращаются с основной жалобой на боль в первом плюснефаланговом суставе. Боль чаще всего связана с нагрузкой, а также часто сочетается с отеком первого плюснефалангового сустава. Может быть покраснение вокруг сустава, хотя обычно это происходит после больших нагрузок и вызывает обострение заболевания. Заболевание чаще встречается у лиц среднего и старшего возраста. Ограничение тыльного сгибания наблюдается, как при пассивном, так и активном их исследовании. Определяются костные остеофиты, которые часто видны невооруженным взглядом.
Дополнительные клинические симптомы включают болезненные кератомы под межфаланговым суставом первого пальца стопы в результате компенсации ограничения движений в первом плюснефаланговом суставе за счет увеличяения их в межфаланговом суставе. Метатарзалгия под головками малых плюсневых костей может быть следствием гипермобильности первого луча.
Исследование сосудов стоп. Сосудистый статус пациентов с заболеваниями стоп имеет важное значение, поэтому при осмотре исследуют пульсацию на артериях нижних конечностях вообще, и на стопах в частности, таких как: тыльная артерия стопы, задняя большеберцовая артерия, подколенная артерия. Сравнивают волосяной покров, температуру, цвет стоп по сравнению с проксимальными отделами нижних конечностей и между собой.
Неврологическое исследование. Сравнивают тактильную чувствительность на обеих стопах и голенях, тонус мышц обеих нижних конечностей по сравнению друг с другом.
Дерматологическое исследование. Обе ноги осматривают на предмет наличия повреждении или изъязвлений кожных покровов. Эластичность и тургор кожи сравнивают на обеих нижних конечностях. Осматривают подошвенные поверхности обеих стоп на предмет наличия гиперкератозов, после чего оценивают их размер, локализацию, плотность и болезненность.
Непосредственная оценка первого луча стопы. Осматривают первый плюснефаланговый сустав, отмечая наличие бурсита, остеофитов и пальпаторно определяя точную локализацию болезненности и ее распространенность.
Исследуют движения в первом плюснефаланговом суставе (в норме они составляют 70-90º тыльного сгибания и 30º подошвенного сгибания). Оценивают имеющиеся ограничения движений. Также на этом этапе оценивают боковую стабильность в первом плюснефаланговом суставе, в котором в норме не имеется движений в горизонтальной плоскости.
Определяют у пациентов гипермобильность первого плюснеклиновидного сустава, для чего проводят следующий тест (на примере обследования правой стопы): левой рукой между первым и остальными пальцами зажимали с латеральной стороны II-ю, III-ю, IV-ю, V-ю плюсневые кости, не позволяя им при этом двигаться друг относительно друга, после чего правой рукой, удерживая в ней первую плюсневую кость, пытались совершить движения в первом плюснеклиновидном суставе в сагиттальной плоскости.
В норме в этом суставе имеются лишь качательные движения, а при гипермобильности они могут достигать 30-35º в сагиттальной плоскости и 10-15º в горизонтальной плоскости.
Лабораторные методы обследования. Стандартное предоперационное обследование включало в себя также электрокардиографию, клинические анализы крови и мочи, определение биохимических параметров сыворотки крови (общий белок, общий билирубин, креатинин, С-реактивный белок, глюкозу, аланинаминотрансферазу, аспартатаминотрансферазу, мочевину, холестерин), коагулограмму. При необходимости больные консультировались специалистами различного профиля (терапевт, хирург, ангиохирург, невролог). Все пациенты осматривались анестезиологом, который принимал решение о виде анестезии, назначал необходимую премедикацию.
Комплексная оценка стопы. Осуществляют ее чаще всего с использованием шкалы Американской ассоциации хирургии стопы и голеностопного сустава (AOFAS) и клинико-рентгенологической шкалы Грулье (Groulier), которые являются общепринятыми в настоящее время повсеместно для оценки результатов лечения хирургии стопы и голеностопного сустава (Ibrahim T. et al., 2007) [2++].
Шкала AOFAS 100-бальная, рассматривает и оценивает клинико-функциональные параметры стопы. Максимальные 100 баллов возможны у пациентов без боли, с полной амплитудой движений в суставах первого луча, без признаков нестабильности этих суставов, без ограничений повседневной и профессиональной активности, без ограничений в выборе и ношении обуви.
Результат лечения с использованием шкалы AOFAS оценивается следующим образом: отличный 95-100 баллов, хороший 75-94, удовлетворительный 51-74, плохой – 50 и менее баллов.
Клинико-рентгенологическая шкала Грулье 85-бальная, и в отличии от шкалы AOFAS, рассматривает не только клинические проявления, но оценивает и рентгенологические параметры переднего отдела стопы.
Результат лечения с использованием шкалы Groulier оценивается следующим образом: отличный 71-85 баллов, хороший 60-70, удовлетворительный 29-59и плохой – 28 и менее баллов.
Анамнез заболевания, клиническое обследование пациента являются очень важными этапами диагностики заболеваний переднего отдела стопы, но они должны комбинироваться с комплексным рентгенологическим и биомеханическим исследованием стоп. Эти элементы, а также понимание биомеханики и функционирования первого плюснефалангового сустава, помогают в создании правильного алгоритма лечения артроза первого плюснеклиновидного сустава.
3.2 Методики рентгенологического обследования пациентов
Всем без исключения пациентам в дооперационном периоде необходимо выполнять рентгенограммы стоп в двух проекциях. Прямая проекция выполняестя следующим образом: расстояние от рентгеновской трубки до обследуемой стопы должно быть равно 1 метру, что позволяет точно определить размеры плюсневых костей и делается под углом 15 градусов относительно вертикальной плоскости, что в конечном итоге позволяет получить строгую перпендикулярную проекцию к плюсневым костям, угол атаки которых, в среднем, равен 15 градусам относительно горизонтальной плоскости.
На ранних стадии Hallux Rigidus рентгенологически проявляется появлением остеофита на головке первой плюсневой кости. Гипермобильность первого луча может проявляться тыльным сгибанием первого луча по сравнению с меньшими плюсневыми костями. При наличии пронации стопы, на боковой проекции, уменьшается угол наклона пяточной кости и увеличивается угол наклона таранной кости. Также может неравномерно суживаться суставная щель первого плюснефалангового сустава.
При поздних стадиях развития заболевания остеофиты отмечаются на всех поверхностях головки первой плюсневой кости, а также на основной фаланги, суставная щель часто не прослеживается.
3.3 Дополнительные методики оценки стоп.
Могут включать в себя оценку стояния и ходьбы пациента, стабилография, динамометрию, подографию, плантографию, но никакой из этих способов не является обязательным и в полной мере его необходимость должна оцениваться лечащим врачом.
Классификация артроза первого плюснефалангового сустава.
Современным требованиям больше всего отвечает рентгенологическая классификация Hattrup и Johnson, созданная ими в 1988 году [2++]. Авторы выделяют 3 стадии заболевания:
I стадия – незначительное сужение суставной щели, отсутсвие остеофитов.
II стадия – серьезные изменения, сужение суставной щели, остеофиты на головке первой плюсневой кости и основной фаланге, кисты и зоны склерозы субхондрально.
III стадия – фиброзный анкилоз сустава, выраженные остеофиты, отсутствие суставной щели.
Лечение артроза первого плюснефалангового сустава стопы.
5.1. Консервативные методы лечения артроза первого плюснефалангового сустава стопы [В].
Все методики направлены только лишь на купирование симптомов заболевания, не устраняя патогенетических его причин.:
Индивидуальные ортопедические стельки:
o поддержка головки первой плюсневой кости
o поддержка продольного свода стопы
o устранения вальгусного положения среднего и заднего отделов стопы
Тейпирование
Ортезы
Индивидуальная сложная ортопедическая обувь
Массаж
ЛФК для мышц голени
Физиотерапевтическое лечение, направленное на снятие болевого синдрома
Консервативное лечение при обострении заболевания заключается в уменьшении острых воспалительных явлений. Пероральные нестероидные противовоспалительные средства в сочетании с инъекциями стероидов и физиотерапии, как правило, имеют хороший эффект. Кроме того, отдых помогает облегчить острый период. Физические упражнения для укрепления первого луча также полезны. Пациенты, которые не реагируют на консервативное лечение, требуют хирургического вмешательства.
5.2. Оперативные методы лечения артроза первого плюснефалангового сустава стопы.
Все операции на первом луче стопы при лечении артроза первого пдюснефалангового сустава можно разделить на две большие группы, разделенные по отношению к сохранению первого плюснефалангового сустава: операции с сохранением сустава и операции с его удалением.
Операции, сохраняющие первый плюснефаланговый сустав. Такие оперативные вмешательства применяются лишь на I-II стадиях развития артроза и могут выполняться, как на основной фаланге, так и на первой плюсневой кости: 1. Операция Кесселя-Бонни (Bonney G., 1952) [В] описана в 1958 и заключается в клиновидной остеотомии основной фаланги, основание клина которой обращено к тылу. Применяется на ранних стадиях заболевания, когда еще нет выраженных повреждений хряща, а основная жалоба состоит в болезненном тыльном сгибании в первом плюснефаланговом суставе. При выполнении этой остеотомии происходит изменение плоскости движения в первом плюснефаланговом суставе и соответственно увеличивается тыльное сгибание при ходьбе.
2. Операция Уотермана (1927). Выполняется клиновидная остеотомия с клином обращенным к тылу (аналогично операции Кесселя-Бони) на уровне дистального метаэпифиза первой плюсневой кости. Изменение плоскости движений такде позволяет увеличить амплитуду движений. Эта операция противопоказана при Metatarsus primus elevatus [В].
3. Если у пациентов с артрозом первого плюснефалангового сустава имеется гипермобильность в медиальном плюснеклиновидном суставе необходимо выполнять операцию артродеза первого плюснеклиновидного сустава, предложенную P.W. Lapidus в 1934 году с установкой первой плюсневой кости в положении подошвенного сгибания. Создание большего подошвенное сгибание первого плюснефалангового сустава позволяет увеличить способность фаланги к тыльному сгибанию во время пропульсивной фазы шага (Lapidus P.W., 1934) [В]. Операция Лапидуса, в отличии от остеотомий первой плюсневой кости и основной фаланги, предполагает исключение нагрузки на оперированную конечность в послеоперационном периоде, что может рассматриваться пациентами как недостаток методики.
4. При наличии у пациента относительно длинной первой плюсневой кости оптимальным способом лечения на ранних стадиях является дистальная шевронная остеотомия первой плюсневой кости и удалением костных блоков и области остеотомии с целью укорочения.
5. Хейлэктомия описана DuVries в 1965 году. Иссечение части остеофитов иногда называют «чисткой сустава». Вмешательство осуществляется удаления медиального, латерального и дорсального остеофитов голвки первой плюсневой кости, которые препятствуют тыльному сгибанию основной фаланги первого пальца (Hetherington V., 1994) [В].
После выполнения хейлэктомии необходима ранняя разработка движений в суставе (обычно от 7 до 10 дней), что является преимуществом данной операции.
Операции, не сохраняющие первый плюснефаланговый сустав.
Такие оперативные вмешательства применяются II-III стадиях развития артроза:
1. Резекционная артропластика – операция Келлера-Брандеса, когда удаляется до 2/3 основной фаланги. Первым в нашей стране стал применять эту операцию Я.М.Волошин (1936). С целью профилактики анкилоза в плюснефаланговом суставе J.D.Singley (1872) [В] предложил заворачивать в сустав лоскут из капсулы сустава, в нашей же стране было предложено использовать в послеоперационном периоде вытяжение за ногтевую фалангу в течение 3 недель с целью создания неоартроза, в котором пространство между головкой плюсневой кости и фрагментом основной фаланги заполняется рубцом.
Несмотря на активное внедрение операций резекционной артропла-стики в нашей стране и получение относительно хороших результатов (Ку-динский Ю.Г., 1967) [А], имеются данные за потерю опороспособности головки первой плюсневой кости и подвывих первого пальца стопы, тугоподвижность и развитие деформирующего артроза в первом плюснефаланговом суставе (Карданов А.А. с соавт., 2008) [В]. Таким образом, эта операция может применяться лишь у пожилых пациентов с низкими запросами на физическую активность.
2. Эндопротезирование первого плюснефалангового сустава. Операция имеет очень ограниченные показания, а именно должна применятся у лиц среднего возраста не имеющих высокую степень физической активности. Отдаленные результаты этой операции во всем мире изучены недостаточно, а оттого ее применение должно быть ограниченным (Hetherington V., 1994) [А].
3. Артродез первого плюснефалангового сустава. На сегодняшний день является «золотым стандартом» при лечении артроза первого плюснефалангового сустава во всем мире. Несмотря на то, что артродез лишает первый плюснефаланговый сустав движений, он стабилизирует медиальную колонну стопы и позволяет полноценно переносить вес тела через передний отдел стопы в шаге (Hetherington V., 1994) [А].
Алгоритм выбора оперативного лечения вальгусного отклонения первого пальца стопы.
6.1. При I стадии артроза первого плюснефалангового сустава показаны:
Операция Кесселя-Бони;
Операция Уотермана;
При гипермобильности первого луча – артродез медиального плюснеклиновидного сустава по Лапидусу;
Хейлэктомия
Укорачивающая шевронная остеотомия.
Однако не рекoмендуется выполнение дистальных остеотомий y пациентов старше 60 лет, поскольку в этом возрасте качество костной ткани головки первой плюсневой кости плохое, как и кровоснабжение, что чревато высоким риском развития аваскулярного некроза или нестабильности остеосинтеза.
6.2. При II стадии артроза первого плюснефалангового сустава показаны:
При гипермобильности первого луча – артродез медиального плюснеклиновидного сустава по Лапидусу;
Хейлэктомия;
Укорачивающая шевронная остеотомия;
Артродез первого плюснефалангового сустава;
Эндопротезирование первого плюснефалангового сустава;
Резекционная артропластика.
6.3. При III стадии артроза первого плюснефалангового сустава показаны:
Артродез первого плюснефалангового сустава;
Эндопротезирование первого плюснефалангового сустава;
Резекционная артропластика.
https://microsievert.ru/wp-content/uploads/2023/11/Artroz-foto-2.jpg402712Андрей Тихмяновhttps://microsievert.ru/wp-content/uploads/2024/06/Untitled-1.pngАндрей Тихмянов2023-11-29 06:40:592023-11-29 06:51:23Артроз первого плюснефалангового сустава (Hallux rigidus)
«Дерево в почках» относится к картине, наблюдаемой на тонкосекционной КТ грудной клетки, при которой центрилобулярное расширение бронхов и наполнение их слизью, гноем или жидкостью напоминает распускающееся дерево ( рис. 2 ). Обычно несколько узловатый вид, рисунок «дерево в почках» обычно наиболее выражен на периферии легких и связан с аномалиями крупных дыхательных путей.
Нормальные дольковые бронхиолы (диаметром ≤ 1 мм) не видны на компьютерной томографии, которая позволяет выявить только бронхи диаметром более 2 мм. Однако можно увидеть пораженные бронхиолы. Таким образом, паттерн «дерево в почках» указывает на спектр эндо- и перибронхиолярных нарушений с дилатацией; утолщение бронхиолярной стенки; перибронхиолярное воспаление; и закупорка просвета бронхиол со слизью, гноем, жидкостью или, как описано совсем недавно, опухолевой эмболией. Впервые описанная в случаях эндобронхиального распространения микобактерии туберкулеза , картина «дерево в почке» в настоящее время признана КТ-проявлением таких различных патологий, как инфекция (бактериальная, грибковая, вирусная, паразитарная), врожденные заболевания (муковисцидоз, синдром Картагенера). , идиопатические расстройства (облитерирующий бронхиолит, панбронхиолит), аспирация или вдыхание инородных веществ, иммунологические нарушения, заболевания соединительной ткани и заболевания периферических легочных сосудов (неопластическая легочная эмболия) (таблица 1 ) . Дополнительные результаты визуализации в сочетании с анамнезом и клинической картиной могут предложить соответствующий диагноз.
Паттерн «Дерево в почках»
Инфекции
Бактериальная инфекция
Классической причиной паттерна «дерево в почках» является постпервичный туберкулез (рис. 3А , 3Б ), состояние, которое развивается примерно у 5% пациентов с первичной инфекцией и часто связано с недостаточностью питания и подавлением иммунитета. Иногда это может отражать повторное заражение новыми организмами. Картина «дерево в почках» предполагает активное и заразное заболевание, особенно когда оно связано с заболеванием смежных полостей в легких.
Наиболее распространенными находками на КТ являются центрилобулярные узелки и ветвящиеся линейные и узловые затемнения. Такая картина «дерево в почке» обусловлена наличием казеозного некроза и гранулематозного воспаления внутри и вокруг терминальных и респираторных бронхиол и альвеолярных ходов, что отражает эндобронхиальное распространение туберкулеза. Другие распространенные находки включают полостные узелки, консолидацию долек, междольковое утолщение и бронховаскулярную деформацию. Также можно увидеть плевральный выпот и увеличенные лимфатические узлы со слабым уменьшением центральной части из-за казеозного некроза. После начала противотуберкулезной терапии большая часть центрилобулярных и ветвящихся помутнений исчезает в течение 5 мес. Однако бронховаскулярные искажения, фиброз, эмфизема и бронхоэктатическая болезнь увеличиваются при последующем КТ.
Атипичные микобактерии могут вызывать картину, неотличимую от картины туберкулеза, хотя и без преобладания верхних долей (рис. 4А , 4Б ). Это также наблюдается в случае Mycobacterium avium-intraculturale или комплекса M. avium , особенно у людей с иммунологическими нарушениями, живущих с ВИЧ. Бронхиолит, вызванный Staphylococcus aureus и Haemophilus influenzae, также может проявляться периферической формой «дерево в почках».
Грибковая инфекция
Инвазивный аспергиллез дыхательных путей, вызывающий бронхиолит, чаще всего возникает у пациентов с нейтропенией и у лиц с иммунологической подавленностью при СПИДе. В просвете дыхательных путей часто обнаруживаются грибковые гифы. Другими клиническими проявлениями этого состояния являются бронхопневмония (перибронхиальное распространение уплотнений) и трахеобронхит (бронхоэктатическая болезнь и утолщение трахеи или бронхов), которые часто бывают двусторонними. Инвазивный аспергиллез дыхательных путей следует предполагать, когда у пациента с лейкемией возникает картина «дерево в почке» в сочетании с консолидацией, сопровождающейся ореолом помутнения по типу «матового стекла».
Вирусная инфекция
Цитомегаловирусная инфекция, которая обычно возникает у людей с ослабленным иммунитетом, может вызывать бронхиолит с центрилобулярными узелками и утолщением бронховаскулярных пучков, образующих структуру «дерево в почке». Этот рисунок может иметь неоднородное и одностороннее или двустороннее и асимметричное распределение и может прогрессировать до участков помутнения и консолидации по типу «матового стекла». Могут быть плохо очерченные узелки с признаком ореола КТ. У младенцев и детей раннего возраста картина «дерева в почках» чаще всего вызвана утолщением и расширением бронхиальной стенки, связанным с респираторно-синцитиальным вирусом.
Врожденные заболевания
Муковисцидоз
Муковисцидоз — аутосомно-рецессивное наследственное заболевание, вовлекающее экзокринные железы, приводящее к выработке аномального секрета слюнными и потовыми железами, поджелудочной железой, толстой кишкой, семявыносящими протоками и трахеобронхиальным деревом. Блокирование транспорта хлоридов в просвет бронхов и чрезмерная резорбция натрия приводят к выработке густой и сухой слизи, что приводит к снижению клиренса слизи и, в конечном итоге, к закупорке слизистой мелкими и крупными дыхательными путями и последующей бактериальной инфекции.
Хроническая инфекция и воспалительные реакции вызывают повреждение легких. Наиболее частые результаты КТ включают утолщение стенок бронхов, бронхоэктазы или бронхоэктазы, закупорку слизистой и задержку воздуха при сканировании выдоха. Большое количество бронхиолярного секрета может вызвать картину «дерево в почке», которая преимущественно поражает верхние доли на ранней стадии заболевания.
Синдром Картагенера
Синдром Картагенера — один из синдромов дискинезии ресничек, группы аутосомно-рецессивных заболеваний, при которых наследственные нарушения структуры и функции ресничек приводят к аномальному мукоцилиарному клиренсу и хронической инфекции. Для него характерна клиническая триада: обратная локализация, синусит и бронхоэктатическая болезнь. Симптомы рецидивирующего бронхита, пневмонии и синусита часто возникают в детстве. У мужчин синдром может быть связан с неподвижностью сперматозоидов и бесплодием.
Типичные результаты КТ грудной клетки при синдроме Картагенера включают двусторонние бронхоэктазы с преобладанием базальных отделов. Повреждение дыхательных путей может распространяться на более мелкие дыхательные пути, вызывая бронхиолектазы, воздушные ловушки и центрилобулярные помутнения, образуя структуру «дерево в почках».
Идиопатические расстройства
Облитерирующий бронхиолит
Облитерирующий бронхиолит, также известный как констриктивный бронхиолит, представляет собой необратимый фиброз стенок мелких дыхательных путей, который сужает или облитерирует просвет, что приводит к хронической обструкции дыхательных путей. Наиболее частые причины включают инфекцию (вирусную, бактериальную, микоплазменную), вдыхание токсичных паров, медикаментозное лечение (пеницилламин или золото), коллагенозные сосудистые заболевания (ревматоидный артрит, особенно после упомянутых методов лечения), хроническое отторжение трансплантата легких и трансплантацию костного мозга. при хронической реакции «трансплантат против хозяина». Тем не менее облитерирующий бронхиолит часто бывает идиопатическим. У пациентов обычно наблюдается одышка и признаки обструкции дыхательных путей. Результаты КТ включают утолщение бронхиальной стенки, центральные и периферические бронхоэктазы, мозаичную перфузию и воздушные ловушки на КТ выдоха (наиболее чувствительный признак). Центрилобулярные узелки, образовавшиеся в результате просветного импакта, образуют рисунок «дерево в почках» ( рис. 5 ).
Диффузный панбронхиолит
Диффузный панбронхиолит — прогрессирующее воспалительное заболевание неизвестной причины, о котором сообщалось почти исключительно в Японии и Восточной Азии. Он представляет собой трансмуральную инфильтрацию лимфоцитов и плазматических клеток, при этом слизь и нейтрофилы заполняют просвет пораженных бронхиол. Большинство больных некурят и страдают хроническим синуситом. Естественным течением заболевания является прогрессирующая дыхательная недостаточность, приводящая к легочному сердцу и, в конечном итоге, к смерти. Помимо толстостенных бронхиол, наполненных слизью и образующих рисунок «дерево в почке», могут наблюдаться узелки, бронхоэктазы, большие кистозные затемнения, сопровождающиеся расширением проксимальных бронхов, мозаичной перфузией или воздушными ловушками.
Аспирация или вдыхание посторонних веществ
Аспирация инфицированных выделений ротовой полости или других раздражающих материалов в бронхиолы может привести к хронической воспалительной реакции. Предрасполагающие факторы включают структурные аномалии глотки, расстройства пищевода (ахалазия, дивертикул Ценкера, грыжа пищеводного отверстия диафрагмы и рефлюкс, рак пищевода), неврологические дефекты и хронические заболевания. В острых случаях может развиться обширное экссудативное бронхиолярное заболевание, приводящее к образованию центрилобулярных узелков и паттерна «дерево в почках» при распределении, характерном для аспирированного материала.
Вдыхание токсичных паров и газов может вызвать повреждение легких. В острой форме оно приводит к альвеолокапиллярному повреждению с последующим отеком легких, бронхитом и бронхиолитом и может осложняться ателектазом и пневмонией. При хроническом течении это может привести к облитерирующему бронхиолиту. Результаты КТ включают утолщение бронхиальной стенки, двустороннюю консолидацию, бронхоэктазы и структуру «дерево в почке» ( рис. 6 ).
Иммунологические расстройства
Аллергический бронхолегочный аспергиллез представляет собой гипериммунную реакцию на колонизацию дыхательных путей видами Aspergillus , часто наблюдаемую у пациентов с астмой и муковисцидозом. Гриб размножается в проксимальных бронхах, действуя как антигенный стимул для выработки антител IgE и IgG. Воспалительная реакция приводит к повреждению бронхиальной стенки, центральным бронхоэктазам и образованию слизистых пробок, содержащих грибок и воспалительные клетки, что приводит к появлению признака «пальец в перчатке» большого закупорки дыхательных путей, который имеет тенденцию преобладать в верхних долях и может быть виден. на рентгенограммах грудной клетки. Поражение мелких дыхательных путей вызывает картину «дерево в почке» (рис. 7А , 7В ). Косвенные признаки заболевания мелких дыхательных путей включают мозаичную картину ослабления легких и захвата воздуха при сканировании выдоха.
Заболевания соединительной ткани
Ревматоидный артрит
Ревматоидный артрит в два раза чаще встречается у женщин, хотя внесуставные проявления (в том числе заболевания легких) чаще встречаются у мужчин. Около 90% пациентов имеют положительный сывороточный ревматоидный фактор и демонстрируют клинические признаки артрита до развития заболеваний легких или плевры. Наиболее распространенные аномалии грудной клетки включают интерстициальную пневмонию и фиброз, плевральный выпот или утолщение плевры, некробиотические узелки, организующуюся пневмонию, бронхоэктазы и облитерирующий бронхиолит.
Лимфоидный интерстициальный инфильтрат в стенках мелких дыхательных путей (фолликулярный бронхиолит) может вызывать небольшие центрилобулярные узелки и узор «дерево в почках» ( рис. 8 ). Более обширные лимфоцитарные инфильтраты могут быть связаны с лимфоидной интерстициальной пневмонией (ЛИП) с помутнениями по типу «матового стекла», консолидацией, утолщением перегородки, имитирующим лимфангитное распространение карциномы, и кистозными воздушными пространствами. Примерно у трети пациентов это состояние прогрессирует до фиброза.
Синдром Шегрена
Синдром Шегрена состоит из клинической триады: сухого кератоконъюнктивита, ксеростомии и рецидивирующего опухания околоушной железы. Наиболее частые торакальные проявления включают ЛИП (чаще, чем при ревматоидном артрите), фолликулярный бронхиолит, интерстициальную пневмонию, организованную пневмонию, воспаление трахеобронхиальных желез и плеврит с выпотом или без него. Как и при ревматоидном артрите, лимфоидный интерстициальный инфильтрат в стенках мелких дыхательных путей может образовывать картину «дерево в почках».
Заболевания периферических легочных сосудов
Легкие являются частым местом опухолевой эмболии, чаще всего из-за хориокарциномы и первичных злокачественных опухолей печени, молочной железы, почек, желудка и простаты. Заполнение центрилобулярных артерий опухолевыми клетками или редкая распространенная фиброцеллюлярная гиперплазия интимы мелких легочных артерий (карциноматозный эндартериит) могут вызывать картину «дерево в почке». У пораженных пациентов наблюдаются прогрессирующая одышка и кашель, а также признаки гипоксии и легочной гипертензии (из-за повышенного сопротивления легочных сосудов).
https://microsievert.ru/wp-content/uploads/2023/11/images_12_09_3401_04b.jpeg12781278Андрей Тихмяновhttps://microsievert.ru/wp-content/uploads/2024/06/Untitled-1.pngАндрей Тихмянов2023-11-25 09:18:212023-11-25 09:18:21Картина «Дерево в почках» при КТ
Легочный аспергиллез — микотическое заболевание, обычно вызываемое Aspergillus fumigatus , сапрофитным и повсеместно распространенным воздушно-капельным грибком. Заболевания легких, связанные с Aspergillus , традиционно подразделяются на четыре различные формы, возникновение которых зависит от иммунологического статуса хозяина и наличия основного заболевания легких. Аллергический бронхолегочный аспергиллез (АБЛА) поражает пациентов с астмой или муковисцидозом. Сапрофитная инфекция (аспергиллома) возникает у пациентов с аномалиями дыхательных путей (хроническая обструктивная болезнь легких, бронхоэктатическая болезнь, муковисцидоз) или хроническими полостями легких. Хронический некротический аспергиллез (полуинвазивная форма) описан у больных с хронической патологией легких или легким иммунодефицитом. Инвазивный аспергиллез (ангиоинвазивная или бронхоинвазивная формы) встречается у пациентов с тяжелым иммунодефицитом. Знание различных рентгенологических особенностей каждой формы, а также соответствующих связанных с ними иммунных нарушений и/или основных заболеваний легких помогает раннему распознаванию и точной диагностике.
На третьем году пандемии SARS-CoV-2 многое стало известно о долгосрочном влиянии пневмонии, вызванной COVID-19, на легкие. Примерно у трети пациентов с пневмонией средней и тяжелой степени, особенно тех, кто нуждается в интенсивной терапии или искусственной вентиляции легких, через 1 год после обращения наблюдаются остаточные отклонения при КТ грудной клетки. Аномалии варьируются от паренхиматозных тяжей до расширения бронхов и выраженного фиброза. Меньше известно о долгосрочных легочных сосудистых последствиях, но, по-видимому, существует постоянный повышенный риск венотромбоэмболических осложнений у небольшой группы пациентов. Наконец, связанные с этим гистологические отклонения, возникающие в результате инфекции SARS-CoV-2, аналогичны тем, которые наблюдаются у пациентов с другими причинами острого повреждения легких.
У некоторых пациентов с COVID-19 от умеренной до тяжелой степени наблюдаются отклонения на КТ грудной клетки, которые сохраняются в течение по крайней мере года после заражения и могут сопровождаться симптомами; эти аномалии КТ имеют сходство с теми, которые были описаны во время эпидемии тяжелого острого респираторного синдрома в 2002–2003 гг.
Основы
■ Примерно у трети пациентов, госпитализированных с пневмонией, вызванной COVID-19, через 12 месяцев после заражения на КТ грудной клетки наблюдались отклонения от нормы.
■ Нарушения КТ варьировались от остаточных паренхиматозных тяжей до фиброза, а также воздушных ловушек и бронхоэктазов.
■ У очень небольшого числа пациентов после острой инфекции наблюдался устойчиво повышенный риск развития венотромбоэмболических заболеваний.
■ Гистопатологические данные при поздних стадиях заболевания COVID-19 были аналогичны таковым при других причинах острого повреждения легких, со смесью гистологических паттернов организующейся и хронической фиброза, и были сопоставимы с данными, полученными при эпидемии тяжелого острого респираторного синдрома.
Введение
На третьем году пандемии SARS-CoV-2 и после последней волны варианта Омикрон в начале 2022 года большая часть мира перешла к эндемическому способу борьбы с Covid-19, хотя и неофициально, как сообщает Всемирное здравоохранение. На момент написания этой статьи организация не объявила о завершении пандемии. Вакцины легко доступны во многих странах, и большая часть населения мира, по-видимому, имеет некоторую степень иммунитета от вакцинации, перенесенной инфекции или того и другого. В отличие от SARS-CoV-1, о котором не сообщалось среди населения с середины 2003 года ( 1 ), SARS-CoV-2, похоже, не исчезает до полного исчезновения. Было показано, что даже более новые варианты SARS-CoV-2 избегают нейтрализующих антител от предыдущего заражения и вакцинации ( 2 ), что способствует новым инфекциям и повторным инфекциям во всем мире.
Поскольку число людей, перенесших один или несколько эпизодов COVID-19, быстро растет, увеличивается доля населения с долговременными симптомами и хроническими проявлениями заболевания в легких. Состояния после COVID-19, также называемые «длительным COVID», «длительным COVID» или «постострыми последствиями COVID-19», состоят из длинного списка признаков и симптомов, начиная от одышки до депрессия и нарушение сна ( 3–5 ) , которые , как сообщается , встречаются у 10% пациентов ( 6–8 ). Хотя не существует общепризнанных определений, в рекомендациях Британского медицинского журнала «длительный COVID» определяется как стойкие симптомы после 4 недель, а «пост-COVID-синдром» — как симптомы, продолжающиеся более 12 недель ( 3 ). Поскольку причины стойких симптомов, вероятно, многофакторны и в настоящее время недостаточно изучены, растущая радиологическая литература о хронических заболеваниях легких при COVID-19 может в конечном итоге облегчить понимание долгосрочных респираторных проблем и корреляций с визуализацией у пострадавших людей.
Знание типичных долгосрочных последствий пневмонии COVID-19 при визуализации органов грудной клетки важно для оценки потенциальных причин хронических респираторных симптомов у выживших, оценки улучшения при последующей визуализации и дифференциации ожидаемых результатов после COVID-19 от других заболеваний легких. . В этой статье обобщены текущие знания о паренхиматозных изменениях паренхимы легких, дыхательных путях, легочных сосудах и гистопатологических данных после COVID-19.
Аномалии паренхимы легких
Острые и подострые результаты КТ паренхимы легких при пневмонии, вызванной COVID-19, хорошо описаны и обобщены в Таблице 1 . Эти паттерны поражения легких аналогичны таковым при инфекции SARS-CoV-1 ( 9 , 10 ) и гриппе с гемагглютинином 1-го типа и нейраминидазой 1-го типа (H1N1) ( 11 , 12 ).
Таблица 1. Острые, подострые и хронические данные КТ пневмонии, вызванной COVID-19.
В нескольких проспективных обсервационных исследованиях оценивались долгосрочные изменения на КТ грудной клетки у пациентов с пневмонией, вызванной COVID-19, примерно через 12 месяцев после заболевания ( 13–27 ) . Однако эти исследования ограничены небольшими когортами с самой различной степенью тяжести заболевания. Еще больше усложняют ситуацию различия в парадигмах последующего наблюдения и методах оценки КТ.
К счастью, недавний систематический обзор и метаанализ, проведенный Ватанабэ и др. ( 28 ), позволяют лучше понять наблюдаемые результаты КТ грудной клетки примерно через 12 месяцев после пневмонии, вызванной COVID-19. Авторы объединили данные из 15 обсервационных ( 21 ) исследований, предоставив данные о 3134 людях. Следует отметить, что популяции, участвовавшие в этих исследованиях, были неоднородными (статистика гетерогенности I2 = 93%): 11 исследований проводились в Китае, три – в Италии и одно – в Великобритании. В общей группе из 3134 пациентов 1801 пациенту была выполнена компьютерная томография через 12 месяцев. Двенадцать из 15 исследований предоставили данные о доле пациентов с остаточными аномалиями легких при КТ, которая оценивается в 33%. Наиболее распространенными проявлениями были помутнение по типу «матового стекла» и «фиброзоподобные изменения» (21% для обоих), за ними следовали бронхоэктазы у 10%, утолщение междольковой перегородки у 8%, ретикулярное помутнение у 6% и консолидация у 3% пациентов. . «Фиброподобные изменения» различались в разных исследованиях и включали «архитектурные искажения с тракционными бронхоэктазами, сотовыми образованиями или и тем, и другим» ( рис . 1–3 ) ( 15 ), «тракционные бронхоэктазы/бронхиоэктазы, потерю объема или то и другое» ( 26 ), « признаки полосообразного фиброза, но не сетчатого помутнения» ( 21 ), а также «наличие сотовых, сетчатых и тракционных бронхоэктазов» ( 27 ).
В двенадцати из 15 исследований сообщалось о доле аномальных результатов КТ грудной клетки через 12 месяцев в зависимости от тяжести COVID-19. В этот субанализ были включены 85% (950 из 1112) пациентов с тяжелой и критической формой COVID-19 и 87% (560 из 641) с легкой и среднетяжелой формой COVID-19. В группе от тяжелой до критической у 38% (278 из 816) пациентов были остаточные КТ-аномалии, включая помутнение по типу «матового стекла», «фиброзоподобные изменения», бронхоэктазы и утолщение междольковой перегородки. В группе легкой и средней степени тяжести у 24% (91 из 378) пациентов были остаточные результаты КТ, состоящие в основном из помутнения по типу «матового стекла». Результаты этого систематического обзора и метаанализа аналогичны опубликованным в 2003 году результатам эпидемии SARS-CoV-1, которые показали, что у 30–40% выживших после тяжелого острого респираторного синдрома наблюдались радиологические отклонения через 6–12 месяцев после выздоровления. Те, у кого были остаточные отклонения через 12 месяцев, имели аналогичные результаты 15 лет спустя ( 29 , 30 ).
Полному пониманию долгосрочных результатов КТ грудной клетки при COVID-19 мешают многочисленные предубеждения и недостатки в этих продольных обсервационных исследованиях. Поскольку многие исследования сосредоточены на результатах КТ грудной клетки с течением времени, неудивительно, что когорты исследования отдают предпочтение пациентам с более тяжелым заболеванием, поскольку они с большей вероятностью будут проходить КТ грудной клетки на момент постановки диагноза, а пациенты с легкими остаточными отклонениями или без них могут не иметь прошел дополнительную визуализацию. Пациенты во многих из этих исследований с большей вероятностью были госпитализированы и нуждались в госпитализации в отделение интенсивной терапии и искусственной вентиляции легких.
Еще одна проблема заключается в том, что в этих исследованиях в основном участвуют пациенты, заразившиеся COVID-19 на ранней стадии пандемии. Вирус со временем эволюционировал в более поздний, более заразный вариант Омикрона (линии BA.1, BA.1.1, BA.2, BA.3, BA.4 и BA.5), который связан с более легким заболеванием, чем начальный вариант и более тяжелый вариант Дельта (линии B.1.617.2 и AY). Недавнее исследование 106 госпитализированных пациентов с COVID-19, 40 с вариантом Омикрона (более ранней линии) и 66 с вариантом Дельта, показало более низкие показатели тяжести КТ в когорте с вариантом Омикрона (31 ) . Yoon и соавт. ( 32 ) ретроспективно проанализировали компьютерную томографию 176 госпитализированных пациентов, 88 с вариантом Дельта и 88 с вариантом Омикрон ранней линии. Пациенты с вариантом Омикрон имели менее тяжелую степень заболевания и более перибронхиальное распространение (а не периферическое), чем пациенты, инфицированные вариантом Дельта.
Определение «фиброза» при КТ грудной клетки, используемое в этих исследованиях, также проблематично. Как подчеркивается в систематическом обзоре и метаанализе Watanabe et al ( 28 ), определение «фиброзоподобных нарушений», используемое в некоторых исследованиях, различалось. Поскольку тканевое подтверждение фиброза не было получено (что вполне логично), наличие фиброза предполагалось только на основании результатов КТ. Еще одним потенциальным препятствием является то, что пациенты с остаточными интерстициальными аномалиями легких при последующих компьютерных томограммах могли иметь эти аномалии до пневмонии, вызванной COVID-19. Сообщается, что эти отклонения наблюдаются у 10% населения, особенно у пожилых людей, которые составляют большинство пациентов с более тяжелой пневмонией, вызванной COVID-19 (33 ) .
Влияние на дыхательные пути
У выживших после пневмонии, вызванной COVID-19, можно наблюдать большие и малые аномалии дыхательных путей, причем частота и тяжесть коррелируют с тяжестью острого заболевания. Результаты КТ дыхательных путей в острой и подострой форме пневмонии, вызванной COVID-19, обобщены в Таблице 2 . Результаты небольших заболеваний дыхательных путей, такие как мозаичное затухание и воздушные ловушки, наблюдались при парной КТ вдоха и выдоха, а исследования МРТ с гиперполяризованным ксеноном 129 (129 Xe ) показывают аномальные паттерны вентиляции и перфузии у пациентов с длительным течением COVID-19. респираторные симптомы даже при нормальной КТ.
Таблица 2. Острые, подострые и хронические проявления пневмонии, вызванной COVID-19, в дыхательных путях
Нарушения дыхательных путей, наблюдаемые в результате предыдущих крупных вспышек респираторных вирусов, служат контекстом для пандемии COVID-19. При птичьем гриппе (H7N9) бронхоэктазы были обычным явлением при КТ через 12 месяцев наблюдения и присутствовали у 24% пациентов (10 из 41), в то время как рестриктивные или обструктивные нарушения функции легких были обнаружены у 55% (11 из 20). ) пациентов, для которых были доступны последующие 12-месячные обследования ( 34 ). Бронхоэктатическая болезнь как долгосрочное последствие инфекции также наблюдалась при ближневосточном респираторном синдроме и SARS-CoV-1 ( 35 ). Задержка воздуха при КТ была описана как частая находка у выживших после пневмонии SARS-CoV-1, обнаруженная у 93% (37 из 40) пациентов при средней продолжительности наблюдения 51,8 дня и у 80% (16 из 20) пациентов. пациентов при средней продолжительности наблюдения 140,7 дней ( 35 ) и у 23% (11 из 47) в другом исследовании 6-месячной КТ у детей с SARS-CoV-1 ( 36 ).
Большие аномалии дыхательных путей
Бронхиальные аномалии, такие как утолщение и расширение стенок, часто встречаются у пациентов с пневмонией, вызванной COVID-19, в острой фазе и на ранней фазе выздоровления, частота и тяжесть которых со временем уменьшаются (37 ) . Расширение бронхов сохраняется у части пациентов после выздоровления от пневмонии, вызванной COVID-19, чаще у пациентов с более тяжелым заболеванием и часто в виде тракционных бронхоэктазов, сопровождающихся другими признаками фиброза. Бронхоэктазы после COVID-19 часто бывают периферическими и связаны с ретикуляционными или лентовидными помутнениями. Besutti и соавт. ( 38 ) обнаружили бронхоэктазы при КТ у 13% (52 из 405) пациентов, проведенных через 5–7 месяцев после выписки по поводу тяжелой пневмонии, вызванной COVID-19. Из них 85% (44 из 52) пациентов имели периферическое распределение, тогда как только 2% (один из 52) имели центральное распределение и 13% (семь из 52) имели как центральное, так и периферическое распределение. Как и при идиопатических интерстициальных пневмониях, тракционные бронхоэктазы могут быть важно распознать из-за корреляции с функциональными нарушениями. В одном исследовании выживших после COVID-19 тракционные бронхоэктазы были обратно связаны с прогнозируемым процентом диффузионной способности легких по угарному газу ( R = -0,49, P < 0,001) и прогнозируемым процентом форсированной жизненной емкости легких ( R = -0,23, P = 0,04) и напрямую коррелировал с показателем по шкале кашля ( R = 0,25, P = 0,03) ( 39 ).
Хотя тракционные бронхоэктазы, связанные с фиброзом, могут быть важным хроническим признаком у выживших после COVID-19, существующие исследования часто не позволяют отличить тракционные бронхоэктазы (предполагающие признаки фиброза) от бронхоэктазов в широком понимании, которые могут быть вызваны любым повреждением дыхательных путей (рис. 4–6 ) . ). Например, в проспективном исследовании компьютерной томографии пациентов через 6 месяцев после выписки из-за умеренной или тяжелой пневмонии, вызванной COVID-19, Карузо и др. (40 ) сообщили о «фиброзоподобных изменениях», определяемых как «сетчатые и/или сотовые структуры» в 72% случаев (40). 85 из 118) больных, бронхоэктатическая болезнь – у 25% (29 из 118); о проценте больных с тракционными бронхоэктазами не сообщалось. Метаанализ Watanabe et al ( 28 ) также включает исследования, в которых частота тракционных бронхоэктазов и других типов бронхоэктазов неясна. Эти потенциально перекрывающиеся категории затрудняют определение того, является ли бронхоэктатическая болезнь у выживших после COVID-19 первичным признаком фиброза (тракционные бронхоэктазы), повреждения дыхательных путей в результате вирусной инфекции или баротравмы или какой-либо комбинации этих этиологий.
Бронхоэктатическая болезнь уже давно признана частым признаком острого респираторного дистресс-синдрома (ОРДС), вызванного другими заболеваниями, кроме COVID-19. Считается, что бронхоэктазы, связанные с ОРДС, наиболее распространенные в передних отделах легких и сопровождающиеся сетчатыми и архитектурными искажениями, являются результатом баротравмы в условиях искусственной вентиляции легких, тяжесть которой коррелирует с продолжительностью вентиляции и высоким давлением на вдохе (41 , 42 ) . . Из 7% (28 из 405) пациентов с фиброзными аномалиями в исследовании выживших после тяжелой пневмонии, вызванной COVID-19, у 36% (10 из 28) наблюдался «поствентиляционный фиброз», определяемый как преобладание передних субплевральных кистозных пространств и ретикуляции. и у 90% (девять из 10) из них были тракционные бронхоэктазы ( 38 ). Тракционные бронхоэктазы могут быть обусловлены прежде всего ОРДС и искусственной вентиляцией легких. В одном исследовании пациентов, госпитализированных с пневмонией средней степени тяжести, вызванной COVID-19, из которого были исключены пациенты с ОРДС, искусственной вентиляцией легких или и тем, и другим, были обнаружены бронхоэктазы или бронхоэктазы на компьютерной томографии через 3 и 12 месяцев только у 2% (двух из 84) пациентов, в то время как «тракционные бронхоэктазы» /бронхиоэктаз» как признак фиброза не был выявлен на компьютерной томографии ни у одного пациента через 3 месяца и развился только у 2% (двух из 84) пациентов через 12 месяцев (43 ) .
Расширение бронхов может быть полностью обратимым, даже при пневмонии, вызванной COVID-19, осложненной ОРДС, что подчеркивает необходимость осторожности при интерпретации острого или подострого расширения бронхов как признака паренхиматозного фиброза или длительного повреждения дыхательных путей. В исследовании 41 человека, выжившего после пневмонии, вызванной COVID-19, с ОРДС, Ху и др. ( 44 ) сравнили компьютерную томографию, полученную через 1–4 недели после появления симптомов, с результатами, полученными по крайней мере через 4 месяца после заражения. У 28 из 41 пациента (68%) развилось варикоидное расширение бронхов («тракционные бронхоэктазы») в пределах паренхиматозных помутнений в течение 1-го месяца, которое разрешилось у большинства (21 из 28, 75%) и значительно улучшилось в остальных случаях. семь пациентов (17% выборки исследования). В исследовании пациентов, госпитализированных по поводу COVID-19, Пан и др. ( 13 ) обнаружили расширение бронхов при КТ, выполненной при выписке, у 27% (57 из 209) пациентов и через 12 месяцев после появления симптомов у 11% (24 из 209). , с разрешением бронхиальной дилатации у 33 пациентов. Luger и соавт. ( 45 ) обнаружили расширение бронхов у 11% (восемь из 76) пациентов с легкой и тяжелой пневмонией, вызванной COVID-19, на исходном уровне и у 9% (восемь из 91) при КТ через 12 месяцев наблюдения.
Небольшие аномалии дыхательных путей
В недавних исследованиях использовалась парная компьютерная томография вдоха и выдоха для оценки возможного вклада заболеваний мелких дыхательных путей в стойкие симптомы при длительном течении COVID-19. Захват воздуха определяется как наличие долек или областей с меньшим, чем обычно, увеличением затухания и отсутствием уменьшения объема при КТ в конце выдоха ( 46 ). Хотя обструктивный дефицит при спирометрии встречается гораздо реже, чем ограничения диффузионной способности (диффузионная способность легких по монооксиду углерода) у выживших после COVID-19, у некоторых пациентов при тестировании функции легких обнаруживаются признаки небольшого поражения дыхательных путей, а при КТ может наблюдаться задержка воздуха. сигнализировать о заболевании мелких дыхательных путей ниже порога обнаружения с помощью функциональных тестов легких ( 19 , 37 ).
Задержание воздуха является частым явлением при острых респираторных инфекциях и было зарегистрировано при COVID-19 ( 47 ). В нескольких исследованиях также сообщалось, что образование воздушных ловушек является долгосрочным явлением у выживших после Covid-19. В исследовании 205 пациентов, ранее госпитализированных по поводу пневмонии, вызванной COVID-19, воздушные ловушки наблюдались при КТ выдоха у 29%, при этом количественные показатели захвата воздуха в группе тяжелой пневмонии были значительно выше, чем в группе легкой пневмонии (48 ) . В дополнительных исследованиях изучалась частота возникновения воздушных ловушек при КТ у пациентов с симптомами, длительно страдающих COVID-19. Франке и соавт. ( 37 ) использовали парную КТ вдоха и выдоха для оценки пациентов с персистирующими респираторными симптомами по крайней мере через 30 дней после появления симптомов COVID-19 (в среднем 72,5 дня). Захват воздуха был наиболее распространенной патологией (37 из 48 пациентов, 77%) ( рис. 7 ), более распространенной, чем такие явления, как помутнение по типу «матового стекла» (19 из 48 пациентов, 40%), ретикуляция (18 из 48 пациентов, 38%) ) или тракционные бронхоэктазы (девять из 48 пациентов, 19%). Кроме того, задержка воздуха чаще наблюдалась у пациентов мужского пола и увеличивалась с возрастом. В проспективном исследовании пациентов с постострыми последствиями COVID-19, у которых симптомы сохранялись в течение как минимум 30 дней после постановки диагноза, Cho et al (49) выявили воздушные ловушки при качественном осмотре у 58% (50 из 86) пациентов. Авторы также использовали количественную КТ с контролируемым методом машинного обучения для оценки процента захвата воздуха в легких, обнаружив схожие средние значения для пациентов, получавших лечение в амбулаторных условиях (25%), госпитализированных пациентов (25%) и пациентов, которым требовалось отделение интенсивной терапии (27%). Однако у пациентов с COVID-19 средний показатель задержки воздуха был значительно выше, чем у здоровых людей из контрольной группы (7%, P < 0,001).
Неясно, является ли задержка воздуха проявлением обратимого воспаления дыхательных путей, первичного повреждения дыхательных путей вследствие COVID-19, постинфекционного облитерирующего бронхиолита, последствия диффузного альвеолярного повреждения (ДАП) или какого-либо другого процесса. Исследования воздушных ловушек у выживших после Covid-19 были ограничены из-за отсутствия сравнительных компьютерных исследований до начала инфекции, что не позволяло исключить ранее существовавшие заболевания мелких дыхательных путей. Кроме того, было хорошо задокументировано наличие воздушных ловушек как частого явления у бессимптомных лиц без признаков поражения мелких дыхательных путей ( 50 ).
Гиперполяризованная МРТ с 129 Xe также недавно появилась как метод исследования гетерогенности вентиляции и газообмена у пациентов с длительными симптомами COVID-19, такими как одышка. Гиперполяризованный газ 129 Xe быстро диффундирует через альвеолярные мембраны в эритроциты, позволяя реконструировать газ, ткани и плазму, а также получать изображения фаз эритроцитов, которые отображают региональную вентиляцию и легочную перфузию (51 ) . В исследовании 76 выживших после COVID-19 (в среднем через 13,8 недель после положительного индекса теста на COVID-19) с персистирующими респираторными симптомами и девяти здоровых добровольцев, не перенесших COVID-19 в анамнезе, Кунер и др. (52) обнаружили значительно большее среднее значение . процент дефектов вентиляции у 23 пациентов, ранее госпитализированных с COVID-19 (8%), чем у 53 пациентов без госпитализации (4%); в обеих группах процент нарушений вентиляции был значительно выше, чем у здоровых добровольцев (1%). В том же исследовании было выявлено аномальное соотношение остаточного объема к общей емкости легких у 14 из 38 пациентов (37%), у которых оно было измерено, что позволяет предположить, что причиной является небольшая обструкция дыхательных путей. Тем не менее, другие исследования МРТ с гиперполяризацией 129 Xe обнаружили относительно нормальную вентиляцию, измеренную в газовой фазе, со значительным дефицитом газообмена, о чем свидетельствуют аномальные изображения фазы эритроцитов, и значительно сниженным соотношением эритроцитов к тканевой плазме, маркером газовой фазы. диффузия через альвеолярный эпителий ( 51 , 53 ). Относительный вклад заболеваний мелких дыхательных путей и заболеваний альвеолярных сосудов еще предстоит определить и может варьироваться у разных людей и в зависимости от клинических обстоятельств.
Легочные сосудистые нарушения
Наличие легочных сосудистых аномалий было выявлено в начале пандемии COVID-19. Расширение легочной сосудистой сети в зонах пневмонии было описано в начальной серии случаев ( 54 , 55 ). Вскоре после этого был отмечен повышенный риск легочной эмболии и тромбоза легочных артерий in situ, особенно у пациентов с тяжелым течением заболевания. За последующие 3 года пандемии спектр выявленных заболеваний легочных сосудов, связанных с COVID-19, значительно расширился, что повлияло на текущую медицинскую практику.
В этом разделе мы рассмотрим современные данные и идеи относительно долгосрочных легочных сосудистых проявлений инфекции SARS-CoV-2, уделив особое внимание легочным сосудистым заболеваниям при «длительном COVID». Динамика данных, касающихся заболеваний легочных сосудов при остром течении COVID-19, обобщена в Таблице 3 . Общей нитью является эндотелиит легких ( 56–58 ), который является важным признаком острого заболевания COVID-19 и может сохраняться в период выздоровления в течение неопределенной продолжительности .
«Длительный COVID» включает в себя различные состояния, включая тромбоэмболию легочной артерии (ЛЭ), которая, по-видимому, чаще встречается среди людей, которым ранее был поставлен диагноз COVID-19. Булл-Оттерсон и др. ( 59 ) в ретроспективном групповом исследовании взрослых на основе национального набора данных электронных медицинских карт, насчитывающего более 63 миллионов записей (март 2020 г. – ноябрь 2021 г.), наблюдали за когортами в течение 30–365 дней после встречи с индексом. для 26 инцидентов, описанных как связанные с «длительным COVID». Исследуемые когорты из 353 164 пациентов с COVID-19 и 1 640 776 без COVID-19 были стратифицированы по возрасту. В когорте с COVID-19 было значительно больше происшествий по сравнению с когортой без Covid-19: 38% (35,4% для возрастной группы 18–64 лет, 45,4% для возрастной группы 65 лет и старше) против 16% (14,6% для возрастной группы 18 лет). –64 года, 18,5% для 65 лет и старше). Самый высокий коэффициент риска был для ПЭ: 2,1 и 2,2 для младшего и старшего возраста соответственно.
Риск «длительного COVID» для пациентов с прорывными инфекциями был изучен Аль-Али и др. ( 60 ) в ретроспективном когортном исследовании из базы данных по делам ветеранов. Лиц с прорывным течением COVID-19 исследовали на предмет различных инцидентов, которые, как было описано, связаны с «длительным COVID», а также на предмет смертности. Группу революционного COVID-19 сравнивали с современной, исторической и непривитой контрольной группой, а также с пациентами с сезонным гриппом. В период от 30 дней до 6 месяцев после прорывной инфекции COVID-19 у пациентов наблюдался повышенный риск (отношение рисков [ОР], 1,5) для постострых состояний COVID-19 с самым высоким риском ТЭЛА (ОР, примерно 4). Этот риск был самым большим для пациентов, нуждающихся в отделении интенсивной терапии, по сравнению со стационарными и амбулаторными пациентами, как в целом, так и при ТЭЛА. Пациенты с прорывным течением COVID-19 также имели более высокий риск смерти (ОР 1,75); однако по сравнению с невакцинированными пациентами с COVID-19 у этих пациентов был меньший риск (ОР «длительного COVID», 0,85; ОР смерти, 0,66). Когда пациентов, госпитализированных с гриппом, сравнивали с пациентами, госпитализированными с прорывным Covid-19, пациенты с COVID-19 имели более высокий риск состояний, связанных с длительным течением COVID-19 (ОР, 1,27) и смерти (ОР, 2,43).
Важно различать чрезвычайно редкие тромботические нежелательные явления, связанные с вакцинацией, включая ТЭЛА и ЛЭ, связанную с COVID-19, прорывной COVID-19 и долгосрочный COVID-19. Вакцино-индуцированная иммунная тромботическая тромбоцитопеническая пурпура (ВИТТ) вызвана выработкой антител к полианионным комплексам фактора тромбоцитов 4 и зарегистрирована для всех четырех основных вакцин против SARS-CoV-2, недавно использовавшихся (Pfizer, Moderna, Johnson & Johnson). и AstraZeneca), а чаще всего — ChADOx1 nCoV-19 (AstraZeneca) ( 61–64 ) . Симптомы обычно развиваются в течение 4 недель после первоначальной вакцинации. Выявление VITT имеет ключевые терапевтические последствия, поскольку избегают применения гепарина из-за аналогичного механизма иммуноопосредованной гепарин-индуцированной тромбоцитопении.
Отдаленные легочные сосудистые проявления COVID-19 остаются до конца не изученными. Текущий консенсус отдает предпочтение эндотелииту ( 56 , 65 , 66 ) и распространению воспалительного процесса в легких ( 67 ), а не васкулиту, как доминирующему объяснению широкомасштабных нарушений легочных сосудов, связанных с COVID-19. К ним относятся стойко повышенный риск ТЭЛА и, возможно, развитие хронической тромбоэмболической легочной гипертензии ( 68 ) и легочной гипертензии ( 69 ). Иногда сообщалось о различных интригующих, но редко описываемых аномалиях легочных сосудов, связанных с COVID-19, значение которых неясно. Брито-Азеведо и др. ( 70 ) описали внутрилегочную сосудистую дилатацию с установкой шунта при эхокардиографии у небольшой группы пациентов, которым потребовалось отделение интенсивной терапии, и авторы предположили, что это может, по крайней мере частично, быть причиной гипоксемии, связанной с COVID-19. и расширенные сосуды на КТ, по механизму сходному с гепатопульмональным синдромом.
Дхаван и др. ( 71 ) предложили использовать вентиляционно-перфузионную (V/Q) сцинтиграфию легких, предпочтительно с ОФЭКТ, в качестве визуализирующего теста первой линии для оценки остаточных тромбов и заболеваний мелких легочных сосудов у пациентов, которые выздоровели от COVID-19, но все еще имеют стойкие респираторные симптомы. Их обоснование заключается в том, что сканирование V/Q играет ведущую роль в оценке заболеваний мелких сосудов легких, которые могут быть неоптимально продемонстрированы на КТ-ангиографах легких. Авторы выделили ожидаемые закономерности заболеваний мелких сосудов в дополнение к ТЭЛА и паренхиматозным заболеваниям легких и предположили, что V/Q-сканирование должно играть клиническую и исследовательскую роль в выяснении эволюции сосудистых заболеваний после острого заболевания COVID-19. Наряду с V/Q-сканированием, продольные данные спектральной КТ должны продолжать проливать свет на долгосрочные легочные сосудистые последствия COVID-19 ( 72 ).
Патологические находки при долгосрочном COVID-19
По мере развития пандемии COVID-19 постепенно стали проявляться патологические изменения в легких, связанные с инфекцией SARS-CoV-2. Некоторые из самых первых сообщений о гистопатологических изменениях при пневмонии, вызванной COVID-19, у живых пациентов были получены из Уханя, Китай, где у пациентов, перенесших операцию по поводу рака легких, также был обнаружен COVID-19 (73 ) . Неудивительно, что в этих ранних сообщениях описывались изменения при остром или раннем формирующемся DAD или других формах острого повреждения легких. Сейчас, на третьем году пандемии, появилась более четкая картина гистопатологических изменений, связанных с COVID-19.
SARS-CoV-2 инфицирует клетки дыхательных путей человека путем связывания с рецептором ангиотензинпревращающего фермента 2 (ACE2) ( 74 ). В остром периоде у пациентов с SARS-CoV-2 и дыхательной недостаточностью обычно наблюдаются гистопатологические признаки DAD. Сообщалось о других формах острого повреждения легких, включая организующуюся пневмонию, острую фибринозную и организующуюся пневмонию, но они встречаются реже, чем DAD. Гистопатологические особенности и патофизиологические механизмы острой пневмонии , вызванной COVID-19, выходят за рамки данного обзора и хорошо описаны ( 75–82 ). Некоторые авторы придерживаются мнения, что патологоанатомические проявления острого COVID-19 аналогичны таковым при других формах острого повреждения легких ( 83 , 84 ), но другие предполагают, что некоторые данные чаще встречаются у пациентов с острым повреждением легких, вторичным по отношению к COVID-19. 19. Хотя легочные микротромбы часто наблюдаются как компонент DAD любой причины, они часто упоминаются как частая находка при остром COVID-19 или встречаются чаще, чем другие вирусные пневмонии (77 , 85–87 ) . Были описаны и другие сосудистые поражения, в том числе старые реканализованные тромбы, сосудистый застой и гемангиоматозоподобные поражения ( рис. 8 , 9 ), в областях без признаков острого повреждения легких ( 88 ). Хотя точные патофизиологические механизмы все еще обсуждаются, эти результаты предполагают возможность наличия отчетливого сосудистого фенотипа повреждения легких, возникающего у пациентов с COVID-19.
У пациента с ДАД, вторичным по отношению к COVID-19 или другой причине, обычно проходит острая фаза, характеризующаяся образованием гиалиновой мембраны, а затем переходит в организующую фазу с пролиферацией фибробластов ( рис. 10 ) ( 89 ). Существует дихотомия в том, как легкие разрешают ДАД. Хотя у большинства пациентов с DAD наблюдаются некоторые долговременные респираторные симптомы, может наблюдаться постепенное разрешение DAD или DAD может перейти в фиброзную фазу ( 89 , 90 ).
В условиях продолжающейся пандемии у большинства пациентов наблюдается полное исчезновение легочных аномалий без гистологических признаков идентифицируемого заболевания, и маловероятно, что они будут подвергаться дальнейшему обследованию ( 91 ). Теперь известно, что это справедливо не для всех пациентов. Долгосрочные легочные последствия острого COVID-19 могут проявляться в виде организующейся пневмонии через несколько недель после первоначального заражения, которая может спонтанно разрешиться ( 92 ). Некоторые из самых ранних сообщений о гистопатологических изменениях в легких, связанных с фиброзом, у пациентов с тяжелой формой COVID-19 были получены из эксплантированных легких пациентов, перенесших трансплантацию ( 93 , 94 ). Авторы этих исследований выявили диффузный интерстициальный фиброз с равномерным коллагеновым утолщением альвеолярных перегородок. Также были выявлены сотовые изменения, а также кистозные пространства, выстланные гистиоцитами и гигантскими клетками. Некоторые из этих результатов также наблюдались в образце эксплантата легкого в препринтной статье и при вскрытии ( 95 , 96 ). В серии трансбронхиальных биопсий из Бразилии было выявлено утолщение перегородки и ремоделирование дыхательных путей ( 97 ). Помимо ремоделирования дыхательных путей, имеются сообщения о хроническом бронхиолите и перибронхиолярной метаплазии ( 98 , 99 ). Эти вышеупомянутые случаи ( 93 , 94 , 97 ), вероятно, представляют собой фиброзную фазу DAD, которая хорошо описана в исследовании аутопсии в Китае и на небольшой серии эксплантированных легких с очень похожими результатами в Соединенных Штатах (рис. 11 ) ( 98 , 100 ).
Гистопатологическую картину усложняет то, что в другой серии случаев, основанных на хирургической биопсии легких, была выявлена обычная интерстициальная пневмония как образец фиброза у пациентов с персистирующим интерстициальным заболеванием легких после COVID-19 (99 ) . Эти авторы также обнаружили другие модели повреждения легких, в том числе DAD, наложившийся на обычную интерстициальную пневмонию, дескваматичную интерстициальную пневмонию и острую организующуюся пневмонию. Наконец, следует отметить, что острое повреждение легких, особенно DAD, часто встречается у патологоанатома на перекрывающихся стадиях (т. е. острое с хроническим или острое и организующееся) (89 ) . На этом этапе также может возникнуть вторичная инфекция ( рис. 12 ) ( 93 ). На момент написания этой статьи сообщество легочных патологов активно изучает гистопатологические результаты долгосрочного лечения COVID-19, и в ближайшем будущем в этой области будет много сказано.
Заключение
Научное и медицинское сообщество многое узнало о диагностике и лечении COVID-19 за 2,5 года с тех пор, как были зарегистрированы первые случаи заболевания в Ухане, Китай. Хотя было опубликовано множество исследований по отдаленным последствиям COVID-19, существуют важные ограничения, в том числе небольшое количество случаев для некоторых описанных субъектов и предвзятость публикаций в сторону положительных исследований визуализации и заболеваний тяжелого спектра. Более того, исследования электронных медицинских карт на основе «больших данных» склонны к предвзятости отбора и информационной необъективности. Мета-анализ, обсуждаемый в этом обзоре, вносит некоторую ясность в данные, но в конечном итоге на него влияют включенные в него исследования переменных.
В настоящее время не существует единого мнения относительно методов визуализационного лечения пациентов с отдаленными последствиями пневмонии, вызванной COVID-19. Разумный подход может включать инспираторную КТ грудной клетки с тонкими срезами для характеристики подозреваемого паренхиматозного заболевания, а также экспираторную визуализацию, если это считается подходящим для оценки заболеваний мелких дыхательных путей. Визуализирующие исследования при подозрении на острую или хроническую тромбоэмболию легочной артерии можно проводить с помощью КТ-ангиографии легких или вентиляционно-перфузионного сканирования. Гиперполяризованная МРТ с 129 Xe уже давно показала себя перспективным инструментом для выявления отклонений у пациентов с хроническими симптомами и нормальной визуализацией, хотя она считается методом исследования и не широко доступна. Решения о визуализации должны основываться на признаках и симптомах пациента, тщательной клинической оценке и конкретных вопросах, на которые необходимо ответить.
https://microsievert.ru/wp-content/uploads/2023/10/images_medium_radiol.221806.fig4_.gif325500Андрей Тихмяновhttps://microsievert.ru/wp-content/uploads/2024/06/Untitled-1.pngАндрей Тихмянов2023-10-26 08:55:572023-11-17 14:47:03Долгосрочные нарушения легких, связанные с пневмонией, вызванной COVID-19
Сегодня тотальное эндопротезирование коленного сустава (ТКА) является одной из наиболее часто выполняемых операций во всем мире. Цель этой статьи — рассмотреть внешний вид нормальных рентгенограмм после ТКА и описать правильную последовательность их интерпретации. Неразумно полагаться исключительно на симптомы пациентов при диагностике осложнений ТКА, поскольку серийные рентгенограммы могут предвидеть неудачи задолго до того, как они проявятся клинически. Идеальные рентгенограммы после ТКА включают в себя всю передне-заднюю и боковую проекции нижней конечности, сделанные в условиях весовой нагрузки, а также панораму надколенника-бедренного сустава. Помимо прочего, весовая нагрузка обнажает правильное положение тела, слабость связок и износ полиэтилена. На основе наблюдения за нашими случаями ТКА мы составили протокол оценки послеоперационных рентгеновских снимков после ТКА. Следуя предложенной последовательности, хирург может легко решить, как действовать дальше и предвидеть осложнения. Тщательная интерпретация послеоперационных рентгенограмм после ТКА необходима для тщательного наблюдения за пациентами и выживания имплантатов.
Введение
Традиционное учение гласит: «Лечите пациентов, а не их рентгенограммы»; однако более поздний опыт показывает, что «не применяйте это правило к пациентам с тотальной артропластикой коленного сустава (ТКА)». Неразумно полагаться исключительно на симптомы пациентов при диагностике осложнений ТКА, поскольку серийные рентгенограммы могут предвидеть неудачи задолго до того, как они проявятся клинически 1 . Рентгенография играет значительную роль при ТКА как в ближайшем послеоперационном периоде, так и в отдаленном периоде наблюдения. Однако хирурги-ортопеды очень не умеют читать рентгенограммы после ТКА и часто не воспринимают огромный объем информации, которую они содержат. При условии, что хирург знает, на что смотреть на рентгенограммах, и в оптимальной последовательности, которой следует следовать, никаких других радиологических исследований после ТКА не требуется.
Идеальные рентгенограммы после ТКА включают в себя всю передне-заднюю и боковую проекции нижней конечности, сделанные в условиях весовой нагрузки, а также панораму надколенника-бедренного сустава. Помимо прочего, весовая нагрузка обнажает правильное положение тела, слабость связок и износ полиэтилена.
Мы предлагаем следующую последовательность наблюдений для чтения рентгенограмм после ТКА.
Имплантация
Рентгенограмма хорошего качества может определить тип используемого имплантата, если не точную марку.
Необходимо попытаться классифицировать имплантаты как: (i) с сохранением задней крестообразной связки, с разрушением задней крестообразной связки и с задней стабилизацией; (ii) цементированные, бесцементные и гибридные; (iii) фиксированные и подвижные подшипники; (iv) разнообразный большеберцовый компонент; и (v) ограниченный или неограниченный протез.
В протезах с задней стабилизацией задняя крестообразная связка заменяется большеберцовой штифтой и бедренным кулачком; однако штифт и кулачок не могут быть непосредственно визуализированы на рентгенограмме. Отсутствие дополнительного куска кости, удаленного из межмыщелковой вырезки для размещения бедренного кулачка, указывает на необходимость использования таких имплантатов 1-4 . Дифференцировать протезы, сохраняющие заднюю крестообразную связку, и протезы, разрушающие заднюю крестообразную связку, гораздо сложнее, поэтому требуются рентгенограммы с соответствующей проникающей способностью рентгеновских лучей для очерчивания поверхности рентгенопрозрачной полиэтиленовой вставки 2–4. Эта поверхность плоская в протезах, удерживающих заднюю крестообразную связку ( чтобы облегчить откат бедренной кости), тогда как в протезах, удерживающих заднюю крестообразную связку, она вогнута 2-4 .
Разница между цементированным и бесцементным ТКА на рентгенограмме совершенно очевидна: край имплантата у последнего типа выглядит шероховатым и выпуклым, тогда как более распространенный цементированный тип 1 , 4 , 5 окружает очевидная рентгеноконтрастность . Когда бедренные компоненты вставляются без цемента, а большеберцовые компоненты с цементом, это называется гибридной имплантацией. Одним из наиболее важных факторов, влияющих на выживаемость имплантата, является качество цементации: в идеале вокруг имплантата должно быть не менее 2 мм цементной мантии, пересекающейся с губчатой костью 6 .
Протезы с фиксированным подшипником, которые имеют полиэтиленовую вставку большеберцовой кости, зафиксированную внутри лотка большеберцовой кости, можно рентгенологически отличить от протезов с подвижным подшипником, которые позволяют перемещать и вращать вставку большеберцовой кости относительно лотка. Протезы с подвижным подшипником имеют внутри вставки металлические маркеры, позволяющие оценить ротационный статус бедренно-большеберцового сочленения, а также металлические штифты, штифты, шпильки и рычаги управления в середине сочленения или упоры или захватывающие края на периферии для направления или ограничения движения. подвижность вставки.
Различные конструкции большеберцовых компонентов, например, моноблочные конструкции с металлической опорой и модульные большеберцовые компоненты, трудно различить рентгенологически. Однако все полиэтиленовые конструкции отчетливо выделяются отсутствием рентгеноконтрастности на большеберцовой стороне. При наличии костных дефектов и повышенном ограничении бедренно-большеберцового сочленения используются бедренные или большеберцовые кости с длинными ножками. Рентгенограммы для их оценки должны показать, смещена ли ножка, использовался ли вместе с ней цемент и достаточная ли длина используемой ножки. Не следует путать варус-вальгусные вставки из полиэтилена с шарнирными протезами, поскольку первые имеют только металлический штифт внутри большеберцовой стойки, тогда как вторые имеют более тяжелый металл в районе большеберцово-бедренного соединения. 1 ).
Тотальное эндопротезирование коленного сустава
Хирургическая процедура
Послеоперационная рентгенография проводится для оценки адекватности процедуры.
Расположение имплантата
Восстановление механической оси во фронтальной плоскости и адекватная ориентация в сагиттальной плоскости необходимы для заключения о правильном положении имплантата.
Механическая ось (переднезадний вид)
В идеале должен быть доступен длинный переднезадний (АП) снимок всей нижней конечности: нарисованная на нем механическая ось должна быть перпендикулярна линии коленного сустава и проходить вблизи или через центр колена. Если доступен только короткий AP-фильм, медиальный дистальный угол бедренной кости (MDFA) и медиальный проксимальный угол большеберцовой кости (MPTA) все равно можно рассчитать; обычно они должны составлять 95° и 90° соответственно (рис. 2 ), сумма меньше 185° и, следовательно, колено находится в 5° вальгусной деформации 5 , 7 , 8 . Важно избегать варус-варусного соосности компонентов 7.. Короткометражные фильмы не подходят, если имеются аномальные изгибы бедренной и большеберцовой костей. MDFA рассчитывается на короткометражных фильмах путем проведения касательной к дистальным мыщелкам бедренной кости и между анатомическими осями бедренной кости. MPTA рассчитывается аналогичным образом путем проведения касательной через опорную пластину большеберцовой кости и между анатомическими осями большеберцовой кости 5 , 8 .
Сагиттальная плоскость (боковой вид)
Сопоставление бедренного и большеберцового компонентов следует оценивать в боковой проекции.
Бедренный компонент должен находиться в нейтральном положении, поскольку чрезмерное разгибание создает риск надреза передней части кортикального слоя бедренной кости, тогда как чрезмерное сгибание препятствует разгибанию колена 1,5 . Выемка — это эрозия передней коры бедренной кости различной степени, обусловленная бедренным компонентом (рис. 3 ). Надрез на бедренной кости увеличивает концентрацию напряжения в передней части кортикального слоя бедренной кости и, таким образом, увеличивает вероятность надмыщелкового перипротезного перелома 9 . Нанесение насечек предостерегает от защитных манипуляций над коленом в послеоперационном периоде.
Гуджарати и др . предложили следующие четыре степени надрезов бедренного компонента :
степень 1, нарушение наружной пластинки передней кортикальной пластинки бедренной кости;
2 степень, нарушение наружной и внутренней пластинки передней коры бедренной кости;
3 степень, нарушение до 25% костномозгового канала;
4 степень — нарушение до 50% костномозгового канала.
Большеберцовый компонент имеет разные задние наклоны в зависимости от конкретной конструкции протеза; однако, как правило, протезы, удерживающие заднюю крестообразную связку, требуют большего наклона, чем имплантаты, стабилизированные сзади. Большинство современных конструкций нацелены на задний наклон 3–7°. Поскольку передняя часть разрезанной большеберцовой кости мягкая, существует вероятность сохранения большеберцового компонента. Этот факт объясняет нормальный задний наклон большеберцового компонента. Следует соблюдать меры предосторожности при разрезании большеберцовой кости, поскольку чрезмерный задний наклон вызывает нестабильность сгибания, тогда как меньший или передний наклон приводит к натяжению коллатеральных связок и, следовательно, к снижению сгибания колена 10 .
Смещение заднего мыщелка (рис. 4 ) представляет собой максимальную толщину заднего мыщелка бедренной кости, проецируемую назад по касательной к заднему корковому веществу диафиза бедренной кости и видимую на боковых рентгенограммах; его необходимо поддерживать после ТКА 10 , 11 . Чрезмерное уменьшение смещения заднего мыщелка после ТКА нежелательно, поскольку приводит к увеличению сгибательного пространства и нестабильности сгибания. Это также вызывает расслабление задней крестообразной связки, что приводит к парадоксальному перекату бедренной кости вперед на большеберцовую кость во время сгибания. В норме бедренная кость перекатывается назад по большеберцовой кости (феномен перекатывания назад) во время сгибания.
Коэффициент смещения заднего мыщелка 11 (рис. 5 ) определяется как максимальная толщина заднего мыщелка, выступающего назад до прямой линии, нарисованной как продолжение кортикального слоя заднего мыщелка бедренной кости, деленная на максимальную толщину заднего мыщелка, выступающего назад к прямая линия, изображающая продолжение коркового вещества передней части тела бедренной кости на истинной боковой рентгенограмме дистальной четверти бедренной кости: ее нормальное значение составляет 0,47 на рентгенограммах после ТКА.
Размер имплантата
Идеальные имплантаты отражают естественную анатомию, а края компонента находятся на одном уровне с соответствующими кортикальными поверхностями 1 , 5 . Небольшой латеральный выступ бедренного компонента допустим. Увеличенный размер бедренного компонента оставляет зазор между передним фланцем и передней кортикальной пластинкой бедренной кости, тогда как компонент меньшего размера приводит к образованию переднего выреза при условии, что компонент находится в нейтральном положении ротации в сагиттальной плоскости. Большой компонент уменьшает сгибание колена, перегружая надколенник-бедренный сустав и создавая плотный сгибательный зазор, тогда как маленький компонент не заполняет сгибательный зазор адекватно, что приводит к нестабильности сгибания 12 .
Маленькие компоненты большеберцовой кости вызывают проседание в губчатой кости, тогда как крупные компоненты вызывают раздражение мягких тканей и дисбаланс связок, что приводит к уменьшению подвижности.
В идеале не должно быть медиального выступа бедренного компонента или заднего выступа большеберцового компонента 12 .
Пателла
Боковой вид
Суперо-нижнюю ориентацию надколенника можно оценить на боковых рентгенограммах с использованием соотношения Инсолла-Сальвати или Кантона-Дешама (рис. 6 ) 13 , 14 . Индекс Инсалла-Сальвати представляет собой отношение наибольшей длины надколенника к длине сухожилия надколенника. Нормальные значения лежат в пределах 0,8–1,2. Значения <0,8 указывают на низко расположенную надколенник, называемую нижней надколенником. Баха надколенника после ТКА влияет на кинематику надколенника и бедренной кости и является настоящей бахой надколенника только тогда, когда она возникает в результате контрактуры сухожилия надколенника; приподнятая послеоперационная линия сустава приведет к появлению видимой баха. Соотношение Инсолла-Сальвати или индекс Катона-Дешама можно использовать для дифференциации истинной и кажущейся баха надколенника 13 , 14 .
Индекс Катона-Дешама представляет собой отношение расстояния между нижним краем суставной поверхности надколенника и передне-верхним краем большеберцовой кости к длине суставной поверхности надколенника.
На этом изображении показана толщина надколенника, которая важна для отслеживания надколенника и влияет на кинематику надколенника и бедренной кости.
Передне-задний вид
Идеальное положение надколенника — медиальные две трети колена; латеральное расположение надколенника предрасполагает к искривлению и латеральному подвывиху 14 (рис. 7 ). Ориентацию надколенника во фронтальной плоскости можно оценить с помощью угла Q. Это угол между линией, идущей от передней верхней ости подвздошной кости к центру надколенника, и второй линией, идущей от центра надколенника к бугристости большеберцовой кости. В норме этот угол вальгусный, составляя в среднем 14° у мужчин и 17° у женщин.
Асимметричные разрезы костей надколенника можно измерить по углу протеза надколенника и кости, который представляет собой угол между линией, проведенной через экватор остатка кости надколенника, и линией, проведенной через границу между протезом надколенника и костью.
Зоны интерфейса фиксации
Единственная цель присвоения зон интерфейсам фиксации (рис. 8 ) вокруг компонентов с помощью системы рентгенографической оценки и оценки тотальной артропластики коленного сустава Общества коленного сустава состоит в том, чтобы обеспечить единообразие в отчетности об аномалиях, таких как рентгенопрозрачные линии и их толщина в различных зонах. На AP-проекциях большеберцового компонента принятые рекомендации по распределению зон следующие: 1–2 для медиального плато, 3–4 для латерального плато и 5–7 для фиксации ножки. Если ножки отсутствуют, то к центральной части плато большеберцовой кости следует отнести зоны 5–7 15 , 16.. На латеральных проекциях бедренного компонента принятые обозначения зон следующие: 1–2 для переднего фланца, 3–4 для задней области и 5–7 для ножки или центральной части, если ножка отсутствует. Аналогично, на горизонтальных изображениях надколенника принятые зоны следующие: 1 для медиальной стороны, 2 для латеральной стороны и 3–5 для фиксирующих выступов или центральной части компонента надколенника.
Для количественной оценки сумма ширины рентгенопрозрачных линий в каждой из зон (в мм) дает общую оценку, которая в случае большеберцовой кости незначительна, если она не превышает 4; рекомендуется регулярное последующее наблюдение, если показатель 5–9 и >10 предсказывает надвигающуюся неудачу. Стабильная линия размером менее 2 мм незначительна, если она появляется в течение года и затем стабилизируется 15 .
Асептическое расшатывание
Двумя наиболее важными радиологическими предикторами расшатывания являются прогрессирующая зона рентгенопрозрачности на границах раздела компонентов и изменение положения компонентов (рис. 9 ). Как склеенные, так и несцементированные компоненты могут иметь тонкие просветы (<1 мм) вокруг опорной пластины и штока. Увеличение размера этого просветления или появление очагов просветления >2 мм означает расшатывание. Такое асептическое расшатывание чаще встречается у компонентов большеберцовой кости и является наиболее частой причиной пересмотра ТКА 1 , 15 , 16 .
Изменения положения компонента очень надежно предсказывают ослабление. При ослаблении большеберцового компонента лоток большеберцовой кости может опускаться в большеберцовое плато, что называется «поддержанием», или большеберцовый компонент может смещаться в варусное положение по отношению к длинной оси большеберцовой кости. Аналогично, на боковых рентгенограммах ослабленные бедренные компоненты смещаются в согнутое положение относительно длинной оси бедренной кости; однако это случается реже, чем расшатывание большеберцовой кости 16 . Стрессовое расшатывание компонента надколенника проявляется малозаметными рентгенологическими признаками.
Септическое рыхление
Хотя их трудно отличить от асептического расшатывания, обширные, плохо выраженные рентгенопрозрачные зоны с периостальной реакцией или без нее позволяют поставить диагноз септического расшатывания. Для дифференциации септического и асептического расшатывания использовались различные методы радионуклидной визуализации. К ним относятся позитронно-эмиссионная томография с флюдезоксиглюкозой, трехфазное сканирование костей и сканирование лейкоцитов с индием-111 17 . Хотя радионуклидная визуализация играет важную роль в диагностической работе, ни один из доступных методов не является золотым стандартом, поскольку каждый из радионуклидных методов имеет свои недостатки и ограничения.
Износ полиэтилена и остеолиз
Есть четыре режима ношения 18 . Режим I – это сочленение между предполагаемыми опорными поверхностями (т. е. между мыщелком бедренной кости и вставкой большеберцовой кости; режим II – это сочленение между основной опорной поверхностью (мыщелком бедренной кости) и поверхностью, которая никогда не предназначалась для использования в качестве опорной поверхности (металлическая основа надколенника). компонент); режим III – между намеренно опорными поверхностями при наличии третьих компонентов корпуса (обломки полиметилметакрилата, металлические обломки, керамические обломки, частицы костей и т. д.); режим IV – сочленение между двумя ненесущими вторичными поверхностями (задняя часть полиэтиленовой вставки). и металлический поднос).
К типам износа относятся: (i) адгезионный износ; (ii) абразивный износ; (iii) третий износ тела; (iv) объемный износ; и (v) линейный износ.
Оставшуюся толщину вставки можно оценить по кратчайшему расстоянию от каждого мыщелка бедренной кости до поперечной линии, проходящей через середину верхней поверхности опорной пластины в переднем и боковом проекциях. Очень важно отметить, что при измерении степени износа полиэтилена рентгеновский луч должен быть параллелен опорной пластине большеберцовой кости, в противном случае интерпретация может привести к путанице. Износ полиэтилена приводит не только к уменьшению суставного пространства и, таким образом, к потере баланса связок (что приводит к нестабильности), но также и к последующему сочленению металл-металл между бедренным компонентом и опорной пластиной большеберцовой кости с течением времени 4 . Это приводит к металлозу внутри сустава; металлические частицы визуализируются как радиоплотности, очерчивающие супрапателлярное углубление капсулы сустава 18. Такие остатки износа участвуют в механизме перипротезного остеолиза и, следовательно, асептического расшатывания. Поскольку остеолиз может протекать клинически бессимптомно и рентгенологически его трудно идентифицировать из-за наличия губчатой кости и маскирования компонентами, при поиске остеолиза у пациентов с высоким риском должен быть высокий индекс подозрений (4 , 10 , 18 , 19 ) . У активного молодого человека, у которого в течение длительного времени установлен имплантат и у которого развивается крепитация металл-металл и избыточная нестабильность, с высокой вероятностью может возникнуть остеолиз. Кроме того, остеолиз чаще встречается при использовании термопрессованных и армированных углеродом вставок, титановых бедренных компонентов и плохой фиксации между большеберцовой ложкой и модульной вставкой 18 ,19 .
Нестабильность надколенниково-бедренного сустава
После ТКА надколенник должен лежать в центре блоковой борозды на изображениях продавца (рис. 10 ) 14 , 19 . Наклон надколенника — это угол, образующийся между границей раздела кость надколенника и протеза и линией, проведенной через передние мыщелки бедренной кости. Наклон надколенника >5° свидетельствует о нестабильности надколенника 1 , 14 , 19 .
Перелом надколенника
Перелом надколенника 20 после ТКА встречается нечасто (рис. 11 ). Это может произойти по следующим причинам 12 , 20 : (i) деваскуляризация надколенника (чрезмерное латеральное ретинакулярное освобождение, которое ставит под угрозу верхне-латеральную коленчатую артерию; (ii) сильные напряжения надколенника из-за неправильного расположения компонентов; и (iii) слишком большие бедренные компоненты). Пациенты обычно жалуются на боль в передней части колена и отставание в разгибателях.В основном пациентов можно лечить консервативно, однако, если смещение >2 мм, показано оперативное вмешательство19,20 .
Гетротропное окостенение
Гетеротропная оссификация (ГО) определяется как образование пластинчатой кости в мягких тканях (рис. 12 ) 1 , 21 , 22 . Частота возникновения ГО после ТКА ниже, чем после тотального эндопротезирования тазобедренного сустава. По-видимому, существует генетическая предрасположенность к этому заболеванию. Пациенты с высоким риском этого включают пациентов с ранее существовавшей или контралатеральной ГО, гипертрофическим остеоартритом, анкилозирующим спондилитом, диффузным идиопатическим гиперостозом скелета , инфекцией 21-24 ; и комбинированная деформация более 15°. Факторы, связанные с хирургической техникой, которые могут привести к НО 23включают расщепление сухожилия четырехглавой мышцы, зачистку мягких тканей на передней поверхности бедренной кости, выпот в колене, надрез бедренной кости, энергичную ретракцию мягких тканей и манипуляции после имплантации 24 , 25 .
Рентгенограммы могут не выявить отклонений в острой фазе эритемы и отека. На более поздних рентгенограммах (через 1–2 недели) выявляют только отек мягких тканей. HO становится очевидной на рентгеновских снимках в среднем через 5 недель, а для достижения зрелости может потребоваться 8–14 месяцев. Трехфазное сканирование костей является предпочтительным методом раннего выявления ГО
Рейдер и др . предложил классификацию ГО, которая фокусируется на функциональных нарушениях пациентов и коррелирует с их рентгенологическими данными 26 : Класс 0, Нет ГО; Класс I, самая большая ГО <5 см 2 на боковых или передних рентгенограммах или ГО в других областях колена; Класс II, наибольший размер HO >5 см 2 на боковых или передних рентгенограммах в разгибательном аппарате или проксимальном отделе бедренной кости; и класс III, наибольший размер HO > 5 см 2 в разгибательном аппарате и возле бедренной кости. Пациенты с ГО III класса по Радеру имеют серьезное ограничение сгибания коленного сустава, что требует хирургического вмешательства.
На рентгенограмме виден вывих бедренно-большеберцового сочленения
Перипротезный перелом
Переломы могут возникать как на большеберцовой, так и на бедренной сторонах как во время операции, так и после операции 23-26 . Предрасполагающими факторами послеоперационных переломов являются остеопения, износ частиц, приводящий к остеолизу, и расшатывание компонентов 27-29 . Очень распространенной локализацией является надмыщелковая область, для которой насечка в передней части бедренной кости является дополнительным фактором риска.
Переломы мыщелкового и большеберцового компонентов протеза встречаются значительно реже. Факторы риска перелома компонента большеберцовой кости включают смещение компонента, неправильную фиксацию, сильный износ полиэтилена и недостаточный размер компонента большеберцовой кости, что приводит к его повреждению. Эти результаты очевидны на соответствующих рентгенограммах 23-29 .
Выводы
Детальное и всестороннее исследование рентгенограмм ТКА помогает расшифровке различных признаков как в ближайшем послеоперационном, так и в отдаленном периоде. Тщательная оценка рентгенограмм позволяет принять решение о следующем лучшем шаге, которым может быть просто регулярное наблюдение или хирургическое вмешательство. Хотя легко убедить пациента с симптомами неудачи и очевидным ослаблением компонентов в целесообразности повторной операции, бессимптомный пациент с остеолизом и чрезмерным износом должен быть соответствующим образом проконсультирован и осведомлен о риске внезапного разрыва вкладыша или истощения костного фонда в случае вмешательства. задержан. Наконец, пациенты с ТКА требуют постоянного наблюдения с проведением адекватных рентгенограмм при каждом посещении.
Предоставить ресурс, который способствует четкому пониманию терминологии поясничных дисков среди клиницистов, радиологов и исследователей. Всем заинтересованным сторонам нужны стандартные термины для нормальных и патологических состояний поясничных дисков, которые можно использовать точно и последовательно и, таким образом, лучше всего использовать для пациентов с заболеваниями дисков.
Дизайн исследования
Данная статья представляет собой обзор литературы.
Методы
В PubMed был выполнен поиск литературы, касающейся поясничного диска. Члены целевой группы индивидуально и коллективно рассмотрели литературу и отредактировали документ 2001 года. Пересмотренный документ затем был представлен на рассмотрение руководящих советов АССР, АНР и НАСС. После дальнейшей доработки на основе отзывов управляющих советов статья была одобрена к публикации управляющими советами трех обществ как представитель консенсусных рекомендаций обществ.
Полученные результаты
В статье обсуждаются рекомендуемые диагностические категории поясничного диска: норма; врожденные отклонения/изменения развития; дегенерация; травма; инфекция/воспаление; неоплазия; и/или морфологический вариант неопределенного значения. В статье представлен глоссарий терминов, относящихся к поясничному диску, подробное обсуждение этих терминов и рекомендации по их использованию. Термины описываются как предпочтительные, непредпочтительные, нестандартные и разговорные. Обновленные иллюстрации наглядно отображают некоторые ключевые термины. Включены ссылки на литературу, послужившую основой для рекомендаций целевой группы.
Выводы
Мы пересмотрели и обновили документ, который с 2001 года предоставляет широко приемлемую номенклатуру, которая помогает поддерживать последовательность и точность в описании анатомических и физиологических свойств нормального и аномального поясничного диска и служит системой классификации и отчетности. построен на этой номенклатуре.
Номенклатура поясничных дисков: версия 2.0
Предисловие
Консенсусная номенклатура и классификация патологии поясничных дисков, опубликованная в 2001 году совместными усилиями Североамериканского общества позвоночника (NASS), Американского общества радиологии позвоночника (ASSR) и Американского общества нейрорадиологов (ASNR), является руководством для радиологов. , клиницисты и заинтересованная общественность на протяжении более десяти лет.
Этот документ выдержал испытание временем. По инициативе АССР рабочая группа врачей-вертебрологов АССР, АНСР и НАСС рассмотрела и доработала документ. Этот пересмотренный документ сохраняет формат и большую часть языка оригинала с изменениями, соответствующими современным концепциям радиологической и клинической помощи. Изменения касаются, прежде всего, следующего: обновление и расширение текста, глоссария, и ссылки для удовлетворения современных потребностей; пересмотр рисунков для большей ясности; акцент на термине «кольцевая трещина» вместо «кольцевой разрыв»; уточнение определений «острых» и «хронических» грыж дисков; пересмотр различий между грыжей диска и асимметричным выпячиванием диска; исключение таблиц в пользу большей ясности пересмотренного текста и рисунков; и удаление раздела «Отчетность и кодирование» из-за частых изменений в этих практиках, которые лучше всего рассматриваются в других публикациях. Внесено еще несколько незначительных поправок. Этот пересмотр обновит работоспособную стандартную номенклатуру, принятую и повсеместно используемую врачами-визуализаторами и клиницистами. которым лучше всего посвящены другие публикации. Внесено еще несколько незначительных поправок. Этот пересмотр обновит работоспособную стандартную номенклатуру, принятую и повсеместно используемую врачами-визуализаторами и клиницистами. которым лучше всего посвящены другие публикации. Внесено еще несколько незначительных поправок. Этот пересмотр обновит работоспособную стандартную номенклатуру, принятую и повсеместно используемую врачами-визуализаторами и клиницистами.
Введение и история
Врачам нужны стандартные термины для нормальных и патологических состояний поясничных дисков.. Термины, которые можно интерпретировать точно, последовательно и с разумной точностью, особенно важны для передачи впечатлений, полученных от визуализации, для принятия клинических диагностических и терапевтических решений. Хотя четкое понимание терминологии диска между рентгенологами и клиницистами является целью этой работы, такое понимание может иметь решающее значение также для пациентов, семей, работодателей, страховщиков, юристов, специалистов по социальному планированию и исследователей.
Работа не была одобрена крупными организациями и не была признана авторитетной радиологическими организациями. Многие предыдущие. В 1995 году междисциплинарная целевая группа NASS обратилась к недостаткам общепринятых терминов, определяющих состояние поясничного диска. Он процитировал несколько документов по проблеме и дал подробные рекомендации по стандартизации. Его работа была опубликована в совместном издании NASS и Американской академии хирургов-ортопедов.
усилия были направлены на решение этих проблем, но имели более ограниченный масштаб, и ни один из них не получил широкого признания.
Хотя работа NASS 1995 года была наиболее всеобъемлющей на тот момент, в ней по-прежнему не хватало прояснения некоторых спорных тем, не рассматривались некоторые вопросы, а также не содержалось рекомендаций по стандартизации классификации и отчетности. Для удовлетворения остающихся потребностей и в надежде на получение одобрения, достаточного для того, чтобы привести к всеобщей стандартизации, NASS, ASNR и ASSR сформировали совместные рабочие группы (сопредседатели Дэвид Фардон, доктор медицинских наук и Пьер Милетт, доктор медицинских наук), в результате чего первая версия документа «Номенклатура и классификация патологии дисков поясничного отдела» . С тех пор время и опыт подсказали необходимость пересмотра и обновления исходного документа. Пересмотренный документ представлен здесь.
Общие принципы, которыми руководствовался первоначальный документ, в этой редакции остались неизменными. Определения основаны на анатомии и патологии, в первую очередь, визуализируемых при визуализационных исследованиях. Признавая, что некоторые критерии при некоторых обстоятельствах могут быть непознаваемы для наблюдателя, определения терминов не зависят от ценности конкретных тестов и не подразумевают их. Определения диагнозов не подразумевают внешние этиологические события, такие как травма, они не подразумевают связь с симптомами, а также не определяют и не подразумевают необходимость специфического лечения.
Целевые группы, как нынешние, так и бывшие, работали на основе модели, которая может быть расширена за счет основной цели обеспечения понимания отчетов об исследованиях изображений. Результат обеспечивает простую классификацию диагностических терминов, которую можно без противоречий расширить до более точных подклассификаций. При сообщении о патологии степени неопределенности будут обозначаться как таковые, а не ставить под угрозу определения терминов.
Все термины, используемые в классификациях и подклассификациях, определены, и эти определения соблюдаются во всей модели. С практической целью некоторым существующим английским терминам придаются значения, отличные от тех, которые встречаются в некоторых современных словарях. Целевые группы предоставляют список и классификацию рекомендуемых терминов, но, учитывая природу языковой практики, обсуждают и включают в Глоссарий широко используемые и неправильно используемые нерекомендуемые термины и нестандартные определения.
Хотя принципы и большинство определений этого документа можно легко экстраполировать на шейный и спинной отдел позвоночника, основное внимание уделяется поясничному отделу позвоночника. Хотя необходимо уточнение терминов, связанных с задними элементами, размерами позвоночного канала и состоянием нервных тканей, данная работа ограничивается обсуждением диска. Хотя не всегда возможно полностью обсудить определения анатомических и патологических терминов без ссылки на симптомы и этиологию, сами определения выдерживают проверку на независимость от этиологии, симптомов или лечения. Из-за акцента на анатомии и патологии в этой работе не определены определенные клинические синдромы, которые могут быть связаны с патологией поясничных дисков.
Руководствуясь этими принципами, мы пересмотрели и обновили документ, который с 2001 года предоставляет широко приемлемую номенклатуру, пригодную для всех форм наблюдения и касающуюся контура, содержания, целостности, организации и пространственных отношений поясничного диска; и это служит системе классификации и отчетности, построенной на этой номенклатуре.
Рекомендации по диагностическим категориям и подкатегориям
В этих рекомендациях представлены диагностические категории и подкатегории, предназначенные для классификации и отчетности по визуализационным исследованиям. Терминология, используемая в этих рекомендуемых категориях и подкатегориях, соответствует подробным объяснениям, данным в Обсуждении, и предпочтительным определениям, представленным в Глоссарии.
Диагностические категории основаны на патологии. Каждый поясничный диск можно классифицировать по одной, а иногда и по нескольким из следующих диагностических категорий: нормальный; врожденные отклонения/изменения развития; дегенерация; травма; инфекция/воспаление; неоплазия; и/или морфологический вариант неопределенного значения. Каждую диагностическую категорию можно подразделить на подкатегории с различной степенью специфичности в зависимости от доступной информации и поставленной цели. Данные, доступные для категоризации, могут привести к тому, что репортер охарактеризует интерпретацию как «возможную», «вероятную» или «определенную».
Обратите внимание, что некоторые термины и определения, обсуждаемые ниже, не рекомендуются в качестве предпочтительной терминологии, но включены для облегчения интерпретации разговорного языка и, в некоторых случаях, неправильного использования. Термины могут быть определены как предпочтительные, непредпочтительные или нестандартные. Нестандартные термины, согласованные с целевыми группами организации, не должны использоваться описанным образом.
Нормальный диск
Нормальный определяет диски, которые являются морфологически нормальными, без учета клинического контекста и без учета дегенеративных изменений, изменений развития или адаптивных изменений, которые в некоторых контекстах (например, нормальное старение, сколиоз, спондилолистез) могут считаться клинически нормальными (рис . 1 ).
Врожденные отклонения/изменения развития
Категория врожденных изменений/вариаций развития включает диски, которые являются врожденными аномалиями или претерпели изменения в своей морфологии в результате адаптации аномального роста позвоночника, например, вследствие сколиоза или спондилолистеза.
Вырождение
Дегенеративные изменения дисков включены в широкую категорию, включающую подкатегории кольцевая трещина, дегенерация и грыжа.
Кольцевые трещины представляют собой разрывы между кольцевыми волокнами или отрывы кольцевых волокон от их прикрепления к позвоночной кости. Трещины иногда классифицируют по их ориентации. «Концентрическая трещина» — это отрыв или расслаивание кольцевых волокон параллельно периферическому контуру диска .). «Лучевая трещина» представляет собой вертикально, горизонтально или наклонно ориентированное разделение (или разрыв) кольцевых волокон, которое простирается от ядра периферически к кольцу или через него. «Поперечная трещина» представляет собой горизонтально ориентированную радиальную трещину, но этот термин иногда используется в более узком смысле для обозначения горизонтально ориентированной трещины, ограниченной периферическим кольцом, которая может включать отделение кольцевых волокон от апофизарной кости. Относительно широкие кольцевые трещины с растяжением остаточного кольцевого края, иногда включая отрыв кольцевидного фрагмента, иногда называют «кольцевыми разрывами» — термином, который является относительно новым и не принят в качестве стандарта. ]. Термин «трещины» описывает спектр этих поражений и не подразумевает, что поражение является следствием травмы.
Использование термина «слеза» может быть неправильно понято, поскольку аналогия с другими слезами имеет оттенок травмы, что неуместно в данном контексте. Термин «трещина» является правильным термином. Следует не поощрять использование термина «разрыв», а когда он появляется, следует признать, что он обычно считается синонимом «трещины», а не отражает результат травмы. В первоначальной версии этого документа предпочтение отдавалось термину «трещина», но эти два термина считались почти синонимами. Однако в этой редакции мы считаем термин «разрыв» нестандартным.
Дегенерация может включать любое или все из следующих явлений: высыхание, фиброз, сужение дискового пространства, диффузное выпячивание кольца за пределы дискового пространства, трещины (т. е. кольцевые трещины), муцинозную дегенерацию кольца, внутридисковый газ, остеофиты апофизов позвонков, дефекты, воспалительные изменения и склероз концевых пластинок
Грыжа широко определяется как локализованное или очаговое смещение материала диска за пределы межпозвонкового дискового пространства. Материал диска может представлять собой ядро, хрящ, фрагментированную апофизарную кость, кольцевидную ткань или любую их комбинацию. Пространство диска ограничено краниально и каудально концевыми пластинками тел позвонков и, по периферии, наружными краями апофизов позвонков, за исключением остеофитов. Термин «локализованный» или «очаговый» относится к распространению материала диска менее чем на 25% (90°) периферии диска, если смотреть в аксиальной плоскости.
Наличие ткани диска, выходящей за края кольцевых апофизов по всей окружности диска, называется « выпячиванием» и не считается формой грыжи ( рис. 3 , вверху справа). Асимметричное выпячивание ткани диска, превышающее 25% окружности диска ( рис. 3 , внизу), часто рассматриваемое как адаптация к прилегающей деформации, также не является формой грыжи. При оценке формы диска при грыже в аксиальной плоскости необходимо учитывать форму двух соседних позвонков.
Грыжу межпозвоночного диска можно разделить на протрузию или экструзию в зависимости от формы смещенного материала.
Выступ имеет место, если наибольшее расстояние между краями материала диска, выступающими за пределы дискового пространства, меньше, чем расстояние между краями основания этого материала диска, выступающими за пределы дискового пространства. Основание определяется как ширина материала диска на внешнем крае исходного дискового пространства, где материал диска, вытесненный за пределы дискового пространства, непрерывен с материалом диска внутри дискового пространства (рис. 4 ) . Экструзияприсутствует, когда, по крайней мере, в одной плоскости любое расстояние между краями материала диска за пределами дискового пространства больше, чем расстояние между краями основания материала диска за пределами дискового пространства, или когда не существует непрерывности между материал диска за пределами дискового пространства и материал внутри дискового пространства ( рис. 5 ). Последнюю форму экструзии лучше всего определить или классифицировать как секвестрацию , если смещенный материал диска полностью потерял целостность с родительским диском ( рис. 6 ). Термин миграция может использоваться для обозначения смещения материала диска от места экструзии. Грыжи дисков в краниокаудальном (вертикальном) направлении через щель в концевой пластинке тела позвонка называются внутрипозвоночными грыжами (узлами Шморля) ( рис. 7 ).
Грыжи диска можно дополнительно отнести к категории « содержащихся» , если смещенная часть покрыта волокнами наружного кольца и/или задней продольной связкой, или « неудерживаемых» , если такое покрытие отсутствует. Если края выпячивания диска на аксиальной компьютерной томографии (КТ) или магнитно-резонансной томографии (МРТ) гладкие, то смещенный материал диска, вероятно, удерживается задней продольной связкой и, возможно, несколькими поверхностными задними кольцевидными волокнами.
Если задний край выпячивания диска неровный, грыжа, скорее всего, не локализована. Смещенная ткань диска обычно описывается по местоположению, объему и содержимому, как описано далее в этом документе.
Альтернативная схема отличия выпячивания от выдавливания рассмотрена в разделе Обсуждение.
Травма
Категория травмы включает разрушение диска, связанное с физическими и/или визуализирующими признаками сильного перелома и/или вывиха, и не включает повторяющиеся травмы, вклад менее сильной травмы в дегенеративный процесс, фрагментацию кольцевого апофиза в сочетании с грыжа диска или аномалии диска в сочетании с дегенеративными подвывихами. Вопрос о том, способствовала ли «менее насильственная» травма дегенеративным изменениям или наложилась на них, является клиническим суждением, которое нельзя сделать, основываясь только на изображениях; следовательно, с точки зрения описания изображений такие диски, в отсутствие существенных визуализирующих доказательств связанного с ними насильственного повреждения, следует классифицировать как дегенерацию, а не травму.
Воспаление/инфекция
Категория воспаления/инфекции включает инфекцию, инфекционно-подобный воспалительный дисцит и воспалительную реакцию на спондилоартропатию. К нему также относится воспалительный спондилит субхондральной замыкательной пластинки и костного мозга, проявляющийся изменениями на МРТ по Модику I типа и обычно связан с дегенеративными патологическими изменениями диска. Для упрощения схемы классификации в данную категорию включены разрозненные условия; поэтому, если позволяют данные, диагноз следует разделить на подкатегории с учетом соответствующей специфичности.
Неоплазия
Первичные или метастатические морфологические изменения тканей диска, вызванные злокачественными новообразованиями, классифицируются как неоплазии с подкатегоризацией для соответствующей специфичности.
Различные парадискальные массы неопределенного происхождения.
Хотя большинство интраспинальных кист имеют менингеальное или синовиальное происхождение, незначительная их часть возникает из диска и образует парадискальную массу, не содержащую ядерного материала. Эпидуральное кровотечение и/или отек, не связанные с травмой или другим известным происхождением, могут создавать околодисковые образования или увеличивать размер грыжевого материала диска. Такие кисты и гематомы могут наблюдаться остро и без сопровождения другой патологии или могут быть компонентом хронической патологии диска.
Морфологический вариант неизвестного значения
Случаи, когда данные указывают на аномальную морфологию диска, но когда данные недостаточно полны, чтобы поддержать диагностическую категоризацию, могут быть отнесены к категории морфологического варианта неизвестного значения.
Подробное обсуждение номенклатуры
В этом документе представлена номенклатура, которая облегчает описание хирургических, эндоскопических или трупных результатов, а также результатов визуализации; а также, с оговоркой, что он касается только морфологии диска, он облегчает общение пациентов, семей, работодателей, страховщиков, а также юридических и социальных органов и позволяет собирать более надежные данные для исследований.
Обычный диск
Отнесение диска к категории «нормальных» означает, что диск полностью и нормально развит и не имеет каких-либо изменений, вызванных болезнями, травмами или старением. Учитывается только морфология, а не клинический контекст. Клинически «нормальные» (бессимптомные) люди могут иметь множество безвредных результатов визуализации, включая врожденные изменения дисков или изменения в развитии, незначительное выпячивание колец, возрастное высыхание, передние и латеральные остеофиты тел позвонков, выступание материала диска. за пределы одной концевой пластинки в результате вывиха тела одного позвонка относительно тела соседнего позвонка (особенно часто при L5–S1) и т. д. Однако в соответствии с номенклатурой и классификацией, основанной на морфологии, такие отдельные диски не считаются «нормальными», а скорее описываются их морфологическими характеристиками, независимо от их клинического значения, если не указано иное.
Диск с трещинами кольцевого пространства
Существует общее мнение о различных формах нарушения целостности кольца, таких как радиальные, поперечные и концентрические трещины. Ученые показали, что кольцевые трещины, в том числе радиальные, концентрические и поперечные, присутствуют почти во всех дегенерированных дисках
Если на МРТ диск обезвожен, вполне вероятно, что в кольце имеется хотя бы одна или несколько небольших трещин. Относительно широкие, радиально направленные кольцевые трещины с растяжением остаточного кольцевого края, иногда сопровождающиеся отрывом кольцевого фрагмента, иногда называют «кольцевыми разрывами», хотя этот термин является относительно новым и не принят в качестве стандарта..
Термины «кольцевая трещина» и «кольцевой разрыв» применялись к данным Т2-взвешенной МРТ локализованных зон высокой интенсивности (HIZ) внутри кольцевого пространства. Зоны высокой интенсивности представляют собой жидкость и/или грануляционную ткань и могут усиливаться под действием гадолиния. Трещины встречаются во всех дегенеративных дисках, но не все они визуализируются как HIZ. Дискография выявляет некоторые трещины, не видимые при МРТ, но не все трещины визуализируются при дискографии. Описание результатов визуализации является наиболее точным, если оно ограничено наблюдением HIZ или дискографически продемонстрированной трещины, с понятным предостережением, что существует неполное соответствие с HIZ, изображениями дискограмм и анатомически наблюдаемыми трещинами.
Еще в документе NASS 1995 года авторы рекомендовали называть такие повреждения «трещинами», а не «разрывами», в первую очередь из-за опасений, что слово «разрыв» может быть неверно истолковано как подразумевающее травматическую этиологию.. Из-за потенциального неправильного понимания термина «кольцевой разрыв» и, как следствие, предположения, что обнаружение кольцевой трещины указывает на травму, термин «кольцевой разрыв» следует считать нестандартным и «кольцевая трещина». ‘ быть предпочтительным термином. Визуализация кольцевой трещины не предполагает травмы или связанных с ней симптомов, а просто определяет морфологические изменения в кольце.
Дегенерированный диск
Потому что возникает путаница в дифференциации изменений патологических дегенеративных процессов в диске от изменений нормального старения. Классификация «дегенерация диска» включает все такие изменения и, таким образом, не заставляет наблюдателя отличать патологические последствия старения от нормальных.
На представления о том, что представляет собой нормальный процесс старения позвоночника, большое влияние оказали посмертные анатомические исследования с участием ограниченного числа образцов, взятых у трупов разных возрастных групп, с неизвестными историями болезни и презумпцией отсутствия поясничных симптомов. С помощью таких методов патологические изменения легко спутать с последствиями нормального старения. Резник и Ниваяма [
] подчеркнул дифференцирующие особенности двух дегенеративных процессов с участием межпозвонкового диска, которые были ранее описаны Шморлем и Юнгханнсом [
]; «деформирующий спондилез», поражающий главным образом фиброзное кольцо и прилегающие апофизы ( рис. 8 , слева), и «межпозвонковый остеохондроз», который поражает главным образом студенистое ядро и концевые пластинки тел позвонков и может включать обширные трещины фиброзное кольцо, за которым может последовать атрофия ( рис. 8 , справа). Хотя Резник и Ниваяма заявили, что причина этих двух образований неизвестна, другие исследования предполагают, что деформирующий спондилез является следствием нормального старения, тогда как межпозвонковый остеохондроз, иногда также называемый «ухудшением диска», возникает в результате явно патологического, хотя и не обязательно симптоматический, процесс
Степень дегенерации диска классифицировали на основании общей морфологии среднесагиттальных отделов поясничного отдела позвоночника (схема Томпсона) постдискографические КТ-наблюдения целостности внутренней части диска (Далласская классификация) ( рис. 9 ); МРТ-наблюдения изменений костного мозга тел позвонков, прилегающих к диску (классификация Modic) , ( рис.10 ); и МРТ-выявляемые изменения ядра (классификация Пфирмана) .
Были предложены различные модификации этих схем для удовлетворения конкретных клинических и исследовательских потребностей.
Грыжа межпозвоночного диска
Потребности общепринятой практики делают необходимым диагностический термин, описывающий материал диска за пределами межпозвонкового дискового пространства. Грыжа межпозвоночного диска, грыжа студенистого ядра (ГНП), разрыв диска, выпадение диска (используется неспецифически), выпячивание диска (используется неспецифически) и выбухание диска (используется неспецифически) — все они использовались в литературе по-разному для обозначения неточно определенного смещения диска. материал диска за пределами промежутка. Отсутствие четкого понимания значения этих терминов и отсутствие определения границ, которые следует наложить на идеальный общий термин, создали большую путаницу в клинической практике и в попытках провести содержательные сравнения научных исследований.
Для общего диагноза смещения материала диска наиболее часто используемым и вызывающим наименьшую путаницу термином является «грыжа межпозвоночного диска». и фрагментированное кольцо) являются частыми компонентами смещенного материала диска [
]. «Разрыв» создает образ разрыва и, следовательно, несет в себе больше намеков на травматическую этиологию, чем «грыжа», которая передает образ смещения, а не разрушения.
Хотя термин «выступание» использовался некоторыми авторами в неспецифическом общем смысле для обозначения любого смещения, этот термин имеет более часто используемое конкретное значение, для которого его лучше всего использовать. «Пролапс», который использовался как общий термин, как синоним конкретного значения протрузии или для обозначения нижней миграции экструдированного материала диска, не часто используется для придания конкретного значения и лучше всего расценивается как нестандартный, в честь более конкретных терминов «выступ» и «экструзия».
За исключением других терминов, а также по соображениям простоты и общего использования, «грыжа межпозвоночного диска» является лучшим общим термином для обозначения смещения материала диска. Этот термин подходит для обозначения общей диагностической категории применительно к конкретному диску и для включения различных типов смещений применительно к группам дисков. Этот термин включает в себя диски, которые можно правильно охарактеризовать более конкретными терминами, такими как «выступающий диск» или «выдавленный диск». Термин «грыжа диска», как он определен в этой работе, относится к локализованному смещению диска. ядро, хрящ, фрагментированная апофизарная кость или фрагментированная кольцевидная ткань за пределами пространства межпозвонкового диска. «Локализованный» определяется как менее 25% окружности диска. Пространство диска ограничено краниально и каудально концевыми пластинками тел позвонков и, по периферии, по краям апофизов колец позвонков, исключая образование остеофитов. Это определение было сочтено более практичным, особенно для интерпретации визуализирующих исследований, чем патологическое определение, требующее идентификации материала диска, смещенного из нормального положения из-за кольцевого дефекта. Смещение материала диска либо через перелом или дефект замыкательной пластинки кости, либо в сочетании со смещением фрагментов сломанных стенок тела позвонка может быть описано как «грыжа» диска, хотя такое описание должно сопровождать описание перелома. во избежание путаницы с первичной грыжей материала диска. Смещение материалов диска из одного места в другое внутри промежутка, как при внутрикольцевой миграции ядра без смещения за пределы промежутка,
Чтобы считаться «грыжей», материал диска должен быть смещен из своего нормального местоположения, а не просто представлять собой приобретенный рост за краями апофизов, как это происходит в случае, когда соединительные ткани развиваются в промежутках между остеофитами или когда кольцевидная ткань смещается. позади одного позвонка как адаптация к подвывиху. Таким образом, грыжа может возникать только в сочетании с нарушением нормального кольца или, как в случае внутрипозвоночной грыжи (узел Шморля), дефектом концевой пластинки тела позвонка.
Детали внутренней архитектуры кольца чаще всего не визуализируются даже на МРТ самого высокого качества.
. Отличить грыжу можно по наблюдению смещения материала диска за края кольцевого апофиза, которое является «фокальным» или «локализованным», что означает менее 25% окружности диска. Граничная граница 25% установлена условно для обеспечения точности терминологии и не указывает на этиологию, связь с симптомами или показания к лечению.
Термины «выпуклость» или «выпячивание» относятся к генерализованному расширению ткани диска за края апофизов.
Такое выпячивание занимает более 25% окружности диска и обычно распространяется на относительно небольшое расстояние, обычно менее 3 мм, за края апофизов (рис. 3 ) . «Выпуклость» или «выпуклость» описывает морфологическую характеристику различных возможных причин. Выбухание иногда является нормальным вариантом (обычно на уровне L5–S1), может быть результатом прогрессирующей дегенерации диска или ремоделирования тела позвонка (как следствие остеопороза, травмы или деформации прилегающих структур), может возникать при расслаблении связок в ответ на нагрузку. или угловое движение, может быть иллюзией, вызванной выпячиванием задней центральной подсвязки диска, или может быть иллюзией из-за усреднения объема (особенно на аксиальных КТ-изображениях).
Выпуклость по определению не является грыжей. Применение термина «выбухание» к диску не подразумевает каких-либо знаний об этиологии, прогнозе или необходимости лечения, а также не предполагает наличия симптомов.
На диске одновременно может быть более одной грыжи. Грыжа диска может присутствовать наряду с другими дегенеративными изменениями, переломами или аномалиями диска. Термин «грыжа межпозвоночного диска» не подразумевает каких-либо знаний этиологии, связи с симптомами, прогноза или необходимости лечения.
Когда данных достаточно, чтобы провести различие, грыжу межпозвоночного диска можно более конкретно охарактеризовать как «выступающую» или «выдавленную». Эти различия основаны на форме смещенного материала. Они не предполагают знания механизма, посредством которого произошли изменения.
Выступающие диски
Протрузии диска — это очаговые или локализованные аномалии края диска, занимающие менее 25% окружности диска. Диск считается «выступающим», если наибольший размер между краями материала диска, выходящим за пределы дискового пространства, меньше, чем расстояние между краями основания этого материала диска, выступающего за пределы дискового пространства. Основание определяется как ширина материала диска на внешнем крае исходного дискового пространства, где материал диска, вытесненный за пределы дискового пространства, непрерывен с материалом диска внутри дискового пространства (рис. 4 ) . Термин «протрузия» подходит только для описания грыжи межпозвонкового материала, как обсуждалось ранее.
Экструдированные диски
Термин «экструдированный» соответствует обыденному значению материала, перенесенного из одной области в другую через отверстие.
. Применительно к диску испытанием на выдавливание является заключение о том, что по крайней мере в одной плоскости любое расстояние между краями материала диска за пределами дискового пространства больше, чем расстояние между краями основания, измеренное в той же самой плоскости. плоскости или когда нет непрерывности между материалом диска за пределами дискового пространства и материалом внутри дискового пространства ( рис. 5 ). Экструдированный материал диска, который не имеет непрерывности с исходным диском, может быть охарактеризован как «секвестрированный».
( рис. 6 ). Секвестрированный диск является подтипом «экструдированного диска», но по определению он никогда не может быть «выступающим диском». Экструдированный материал диска, смещенный от места экструзии, независимо от целостности диска, может можно назвать «мигрировавшим» — термин, который полезен для интерпретации исследований изображений, поскольку по изображениям часто невозможно узнать, существует ли непрерывность.
Вышеупомянутые различия между выступанием и выдавливанием, а также между содержащимся и несодержащимся основаны на общепринятой практике и широком признании определений, содержащихся в исходной версии этого документа. Другой набор критериев, поддерживаемый некоторыми уважаемыми практиками, определяет экструзию как неудержимую, а выпячивание — как постоянство удержания, независимо от относительных размеров основания и смещенной части материала диска. Согласно этим критериям, экструзию диска можно определить по наличию непрерывной линии низкой интенсивности сигнала вокруг грыжи диска. Они заявляют, что современные современные методы визуализации позволяют проводить различие по этому принципу и что наличие или отсутствие локализации имеет большее клиническое значение, чем морфология перемещенного материала.
Будет ли их метод превосходить рекомендуемый в настоящее время метод, будет определено будущими исследованиями. Использование различия между «выступанием» и «экструзией» не является обязательным, и некоторые наблюдатели могут предпочесть во всех случаях использовать более общий термин «грыжа». непрерывность, объем, состав и расположение смещенного материала диска.
Сдерживание, непрерывность и миграция
Материал грыжи диска может быть «сдерживаемым» или «несдерживаемым». Проверка сдерживания заключается в том, полностью ли удерживаются смещенные ткани диска в неповрежденном наружном кольце и/или волокнах задней продольной связки. Не следует ожидать, что жидкость или любой контраст, введенный в диск с «сдерживаемой» грыжей, попадет в позвоночный канал. Хотя задняя продольная связка и/или перидуральная мембрана могут частично покрывать экструдированные ткани диска, такие диски не считаются «содержащимися», если задняя продольная связка не повреждена. Технические ограничения доступных в настоящее время неинвазивных методов визуализации (КТ и МРТ) часто не позволяют отличить изолированную грыжу диска от неконтролируемой.
Смещенные фрагменты диска иногда характеризуются как «свободные». «Свободный фрагмент» является синонимом «секвестрированного фрагмента», но не синонимом «несодержащегося». Фрагмент диска следует считать «свободным». или «секвестрирован» только в том случае, если между ним и исходным диском отсутствует целостность материала диска. Диск может быть «неограниченным» с потерей целостности задней продольной связки и наружного кольца, но при этом сохранять непрерывность между грыжевым/смещенным материалом диска и исходным диском.
Термин «мигрировавший» диск или фрагмент относится к смещению большей части смещенного материала диска от отверстия в кольцевом пространстве, через которое материал экструдировался. Некоторые мигрировавшие фрагменты будут секвестрированы, но термин «мигрировавшие» относится только к положению, а не к непрерывности.
Термины «капсула» и «субкапсулярный» использовались для обозначения сдерживания неустановленной комбинацией кольца и связки. Эти термины не являются предпочтительными.
Говоря конкретно о задней продольной связке, некоторые авторы разделяют смещенный материал диска на «подсвязочный», «экстралигаментозный», «транслигаментозный» или «перфорированный». Предпочтителен термин «сублигаментозный». как эквивалент слова «содержится».
Объем и состав вытесненного материала
Схема определения степени повреждения канала, вызванного смещением диска, должна быть практичной, объективной, достаточно точной и клинически значимой. Простая схема, отвечающая критериям, использует двумерные измерения, полученные из осевого сечения в месте наиболее серьезного повреждения. Поражение канала менее одной трети канала на этом участке считается «легким», от одной до двух третей — «умеренным», а более двух третей — «тяжелым». Та же самая степень может применяться при поражении отверстий.
Такие характеристики объема описывают только площадь поперечного сечения на одном сечении и не учитывают общий объем вытесненного материала; близость, сжатие и искажение нервных структур; или другие потенциально значимые особенности, которые наблюдатель может дополнительно детализировать посредством описательного описания.
Состав смещенного материала можно охарактеризовать такими терминами, как ядерный, хрящевой, костный, кальцинированный, окостеневший, коллагеновый, рубцовый, высушенный, газообразный или сжиженный.
Клиническое значение, связанное с наблюдением за объемом и составом, зависит от корреляции с клиническими данными и не может быть выведено только на основе морфологических данных.
Расположение
Бонневиль предложил полезную и простую буквенно-цифровую систему для классификации в зависимости от местоположения положения фрагментов диска, мигрировавших в горизонтальной или сагиттальной плоскости.
Используя анатомические границы, знакомые хирургам, Уилтс предложил другую систему.
Анатомические «зоны» и «уровни» определяют по следующим ориентирам: медиальный край суставных фасеток; медиальный, латеральный, верхний и нижний края ножек; а также корональная и сагиттальная плоскости в центре диска. В горизонтальной (осевой) плоскости эти ориентиры определяют границы центральной зоны, подсуставной зоны (латерального углубления), фораминальной зоны, экстрафораминальной зоны и передней зоны соответственно (рис. 11 ) . В сагиттальной (краниокаудальной) плоскости определяют границы уровня диска, инфрапедикулярного уровня, педикулярного уровня и супрапедикулярного уровня соответственно ( рис. 12).). Этот метод не так точен, как показано на рисунках, поскольку границы, такие как медиальные края фасеток и стенки ножек, изогнуты, но метод прост, практичен и широко используется.
При перемещении от центрального к праволатеральному в аксиальной (горизонтальной) плоскости расположение можно определить как центральное, правоцентральное, правое подсуставное, правое фораминальное или правое экстрафораминальное. Термин «парацентральный» менее точен, чем определение «правого центрального» или «левого центрального», но полезен при описании групп дисков, которые включают в себя оба диска, или, говоря неформально, когда сторона не имеет значения. Для сообщения о наблюдениях изображения конкретного диска термины «правый центральный» или «левый центральный» должны заменять использование термина «парацентральный». Термин «дальний латеральный» иногда используется как синоним термина «дальний латеральный». «экстрафораминальный».
В сагиттальной плоскости расположение может быть определено как дискальное, инфрапедикулярное, супрапедикулярное или педикулярное. В корональной плоскости передний по отношению к диску означает вентральный по отношению к среднекоронковой плоскости центра.
https://microsievert.ru/wp-content/uploads/2023/09/5b511d99007ee.png7081024Андрей Тихмяновhttps://microsievert.ru/wp-content/uploads/2024/06/Untitled-1.pngАндрей Тихмянов2023-09-23 17:01:512023-11-17 14:47:03Номенклатура поясничных дисков: версия 2.0
Нетравматический субхондральный перелом головки бедренной кости (СГБ) часто наблюдается у пациентов пожилого возраста с остеопорозом и дисплазией вертлужной впадины. Хотя эта травма также может возникнуть у молодых людей, даже у тех, у кого нет остеопороза, остается неясным, кто находится в группе риска. Изучены строение вертлужной впадины и места субхондрального перелома СГ у молодых пациентов в сравнении с таковыми у пациентов среднего и старшего возраста.
МАТЕРИАЛЫ И МЕТОДЫ. Сорок восемь тазобедренных суставов с нетравматическим субхондральным переломом СГ были разделены на две группы по возрасту пациентов: молодые (< 40 лет) и среднего и старшего возраста (≥ 40 лет). Дисплазию и ретроверсию определяли как угол латерального центра и края <20° и знак пересечения на передневерхних рентгенограммах соответственно. Местоположение и степень перелома оценивали путем измерения краевого положения полос низкой интенсивности сигнала на корональных Т1-взвешенных МР-изображениях. Распределение напряжений на субхондральную кость у молодых пациентов оценивали в контралатеральных непораженных бедрах с той же структурой вертлужной впадины с использованием конечно-элементного моделирования на основе КТ.
ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ. Двенадцать тазобедренных суставов были у молодых пациентов и 36 – у пациентов среднего и старшего возраста. У пациентов молодого возраста ретроверсия тазобедренных суставов наблюдалась в 41,7%, тогда как у пациентов среднего и старшего возраста дисплазия — в 38,9%. У молодых пациентов наблюдались более крупные медиолатеральные переломы; переломы у пациентов среднего и старшего возраста располагались латерально. В обеих группах наблюдались передне-верхние переломы. Контактный стресс у пациентов с ретроверсией преимущественно распространялся на медиолатеральной и верхней сторонах, но у одного пациента с дисплазией был сконцентрирован латерально и сверху.
ЗАКЛЮЧЕНИЕ. Медиолатеральные и передне-верхние переломы, а также распределение напряжений за счет ретроверсии часто наблюдались у молодых пациентов, что позволяет предположить частичное участие ретроверсии в механизме повреждения нетравматических субхондральных переломов СГ у молодых пациентов.
Сообщается, что субхондральный перелом головки бедренной кости (СГБ) возникает без предшествующей травмы; у пожилых людей с остеопорозом он наблюдается как перелом недостаточности [ 1 , 2 ]. В 1997 году Висури [ 3 ] сообщил, что субхондральный перелом СГ также возник в виде усталостного перелома у 10 молодых военнослужащих. В более поздних сообщениях это повреждение описывалось у молодых пациентов с остеопорозом и у здоровых молодых людей даже без признаков чрезмерного использования или общего остеопороза [ 4-6 ] . Из-за небольшого количества зарегистрированных случаев причины этого перелома у молодых людей остаются неясными.
Несколько исследований пожилых людей с остеопорозом сообщили о высокой распространенности дисплазии вертлужной впадины, что позволяет предположить, что структура вертлужной впадины может играть роль в возникновении субхондрального перелома СГ [7-9 ] . Ивасаки и др. [ 10 ] предположили, что недостаточное покрытие вертлужной впадины у пациентов с дисплазией вертлужной впадины может вызвать контактное напряжение между краем вертлужной впадины и латеральным расположением СГ, приводящее к латеральному субхондральному перелому.
Насколько нам известно, ни одно из предыдущих исследований не изучало влияние структуры вертлужной впадины или местоположения субхондрального перелома СГ у молодых пациентов. Мы предположили, что рентгенологические особенности строения и места перелома вертлужной впадины у молодых пациентов будут отличаться от таковых у пациентов среднего и старшего возраста, что может пролить свет на причины субхондрального перелома СГ у молодых пациентов. Поэтому целью нашего исследования было изучение строения вертлужной впадины и места перелома при нетравматическом субхондральном переломе СГ у молодых пациентов в сравнении с таковыми у пациентов среднего и старшего возраста.
Материалы и методы
Пациенты
Институциональный наблюдательный совет Университета Кюсю одобрил это ретроспективное исследование. Все испытуемые были проинформированы о том, что данные будут представлены, и дали свое согласие. С января 2006 г. по март 2016 г. было проведено МРТ 51 тазобедренного сустава у 48 пациентов с нетравматическим субхондральным переломом СГ. Из них в трех тазобедренных суставах уже были выявлены тяжелые изменения остеоартрита, классифицированные как 4 степень по Келлгрену-Лоуренсу на первоначальных рентгенограммах; эти пациенты были исключены. Таким образом, мы наконец исследовали 48 тазобедренных суставов у 45 пациентов с нетравматическим субхондральным переломом СГ, в том числе 13 мужчин (15 тазобедренных суставов) и 32 женщин (33 тазобедренных сустава) со средним возрастом 56 лет (диапазон 16–85 лет). Используя 40 лет как начало среднего возраста, мы разделили испытуемых на две группы: пациенты моложе 40 лет (молодые) и пациенты 40 лет и старше (среднего возраста и старше).
Диагностика
Нетравматический субхондральный перелом СГ диагностировали у пациентов, соответствующих следующим критериям включения: боль в бедре без предшествующей травмы; рентгенограммы, которые показали коллапс СГ, линейные очаговые склеротические участки в СГ или и то, и другое; интенсивность сигнала, напоминающего отек костного мозга, в области СГ, шеи или обоих на МРТ; и субхондральная полоса низкой интенсивности сигнала на Т1-взвешенной МРТ, которая была змеевидной или параллельной суставной поверхности [ 2 , 11 ]. Кроме того, гистопатологические данные о субхондральном переломе у пациентов, пролеченных хирургическим путем, были подтверждены путем исследования полностью удаленной СГ или интраоперационной биопсии коллапсирующего образования [ 1 , 2] .]. Макроскопически наблюдался криволинейный перелом беловато-серого цвета, параллельный замыкательной пластинке субхондральной кости, а микроскопически наблюдалась беловато-серая область, включающая неравномерно расположенную мозоль перелома, реактивный хрящ и грануляционную ткань. Хотя некротических поражений вокруг перелома не наблюдалось, небольшие некротические поражения могут наблюдаться при нетравматическом субхондральном переломе СГ. Эти поражения ограничены областью вокруг линии перелома, без признаков предшествующего инфаркта кости. МРТ с усилением гадолинием была выполнена в семи бедрах, чтобы дифференцировать нетравматический субхондральный перелом от остеонекроза СГ [ 12 , 13] .]. При усиленной МРТ проксимальная часть СГ имеет тенденцию показывать высокую интенсивность сигнала при нетравматическом субхондральном переломе, тогда как при остеонекрозе эта часть не усиливается [ 11 ]. Интенсивность сигнала, напоминающего отек костного мозга, на МРТ без коллапса СГ или субхондрального перелома отличалась от нетравматического субхондрального перелома СГ [ 14 ].
Уход
Всем пациентам с субхондральным переломом СГ первоначально проводилось консервативное лечение, заключающееся в покое и исключении физической активности в течение 6–8 недель. Тотальное эндопротезирование тазобедренного сустава (ТТА) было показано пациентам с остеоартритными изменениями или прогрессирующим коллапсом на рентгенограммах. Остеотомия была показана пациентам моложе 50 лет, если одна треть или более задней области СГ была интактной [ 15 ].
Радиологическая оценка
Переднезадние рентгенограммы таза были получены, когда субъект лежал на спине. Центральная ось луча проходила через середину верхнего края лонного сочленения и линию, соединяющую передневерхнюю ость подвздошной кости. Вращение нижних конечностей стандартизировали путем расположения обеих надколенников в точном фронтальном положении. Наклон таза определяли с использованием метода, описанного Siebenrock et al. [ 16]. Они измерили расстояние между симфизом и серединой крестцово-копчикового сустава, чтобы оценить наклон таза на переднезадних рентгенограммах, сообщив, что это расстояние значительно коррелирует с наклоном таза. В норме расстояние между лобковым симфизом и крестцово-копчиковым суставом составляет 20–40 мм у мужчин и 40–60 мм у женщин; эти значения были использованы для уменьшения ошибок измерения параметров бедра в зависимости от наклона таза.
МРТ выполняли с помощью системы 1,5 или 3 Т (Achieva, Philips Healthcare). Корональные и аксиальные Т1-взвешенные изображения (TR/TE, 400–748/8–20; поле зрения 36 × 36 см; толщина среза 3–5 мм; межсрезовый промежуток 1 мм) были доступны всем пациентам.
Структуру вертлужного края оценивали путем измерения латерального центрально-краевого угла (LCEA) на переднезадних рентгенограммах, а вертлужную дисплазию определяли как наличие LCEA менее 20° [17, 18] ( рис . 1 ) . ). Ретроверсию вертлужной впадины определяли как наличие признака перекреста (COS) на переднезадних рентгенограммах [ 19 , 20 ] ( рис. 1 ). Острый угол (образуется линией, соединяющей латеральный и нижний края вертлужной впадины, и горизонтальной линией) и наклон крыши вертлужной впадины (образуется линией, соединяющей медиальный край вертлужной впадины, латеральный край вертлужной впадины и горизонтальную линию). ) также измерялись на переднезадних рентгенограммах [17 , 21 , 22 ]. Угол антеверсии вертлужной впадины измеряли на аксиальном срезе МРТ с использованием метода, описанного Anda et al. [ 23 ] ( рис. 1 ). При диспластических тазобедренных суставах остеоартрит тазобедренного сустава оценивали на переднезадних рентгенограммах с использованием системы классификации Келлгрена-Лоуренса [ 24 ]. Наличие или отсутствие интенсивности сигнала, подобного отеку костного мозга, в вертлужной впадине исследовали у этих пациентов с использованием корональных Т1-взвешенных МР-изображений.
Что касается мест нетравматического субхондрального перелома СГ, как медиолатеральное, так и передне-заднее расположение, а также протяженность субхондрального перелома оценивали путем измерения местоположения каждого края (медиального, латерального, переднего и заднего) субхондрального низкоинтенсивного сигнала. полосы на всех корональных Т1-взвешенных МР-изображениях ( рис. 2 ). Используя медиолатеральное и переднезаднее расположение полос низкой интенсивности сигнала, было проиллюстрировано распределение переломов в двух группах.
Все радиологические параметры, за исключением COS, измеряли с помощью программного обеспечения ImageJ (Национальные институты здравоохранения).
Моделирование методом конечных элементов
Распределение контактного напряжения на субхондральной кости СГ с ретроверсией вертлужной впадины в группе молодых пациентов на среднекорональных и среднесагиттальных срезах оценивали отдельно с использованием моделей конечных элементов (МКЭ). FEM были созданы для пациентов, перенесших КТ. Чтобы исключить влияние субхондрального перелома СГ, ФЭМ каждого пациента были созданы в контралатеральном непораженном бедре с такой же структурой вертлужной впадины. В качестве контроля также оценивалось распределение нагрузки на одно контралатеральное диспластическое бедро в группе пациентов среднего и старшего возраста. Данные КТ включали как тазобедренные, так и коленные суставы в спиральном режиме в матрице 512×512, с толщиной среза 2 мм или менее (Aquilion, Toshiba). Во время сканирования пациентов укладывали на спину, голени фиксировали к столу с помощью шины ниже колена для фиксации ротационного положения. FEM были созданы на основе данных DICOM CT с использованием программного обеспечения Mechanical Finder (версия 7.0, Исследовательский центр вычислительной механики).
ФЭМ состояли из таза, суставного хряща и бедренных костей, которые вместе представляли собой односторонние тазобедренные суставы. Предполагалось, что конструкции полностью склеены. ПЭМ имели тетраэдрические элементы диаметром 2 мм для трабекулярных костей и трехточечные оболочечные элементы толщиной 0,4 мм для наружной поверхности кортикальных костей. Суставной хрящ моделировался как гомогенный изотропный материал, а модуль упругости кости определялся по значениям затухания КТ [ 25 ]. Затухание в каждом элементе рассчитывалось по среднему значению CT в 17 точках тетраэдрического элемента с использованием программного обеспечения Mechanical Finder. Впоследствии минеральную плотность кости (МПК) (в г/см 3 ) определяли в соответствии с этими значениями ослабления, используя калибровочное уравнение, описанное в предыдущих исследованиях [ 25] ., 26 ]. Для значений ослабления -1 HU или менее BMD составляла 0,0 г/см 3 . Для значений затухания выше −1 HU,
где HU – значение затухания. Модуль упругости (E) каждого элемента определялся по значению BMD с использованием уравнений, описанных Keyak et al. [ 26 ]. Коэффициент Пуассона таза и бедренной кости составлял 0,30 [ 27 ]. Модуль упругости и коэффициент Пуассона суставного хряща составляли 10,35 и 0,40 соответственно [ 25 ]. К тазу была приложена нагрузка в 900 Н вертикально, дистальная часть диафиза бедренной кости была полностью зафиксирована [ 25 , 28 ]. Наконец, мы сравнили распределение эквивалентного напряжения Друкера-Прагера — широко используемого метода, при котором кость рассматривается как хрупкий материал [ 29] .], на среднекорональных и среднесагиттальных срезах (которые показали контактное напряжение) при исследовании СГ.
Статистический анализ
ИМТ, время от начала боли до операции и рентгенологические измерения сравнивались между двумя группами с использованием t- статистики. LCEA менее 20° и COS сравнивали с использованием критерия хи-квадрат Пирсона. Взаимосвязь между временем от появления боли до операции и степенью медиолатерального субхондрального перелома СГ оценивали с помощью коэффициента корреляции Пирсона. Один автор измерял все радиологические параметры дважды с интервалом в 1 месяц. Два наблюдателя также измерили их независимо. Внутри- и межисследовательскую надежность оценивали с помощью коэффициента внутриклассовой корреляции. Внутриклассовая корреляция определялась как почти идеальная, когда значение превышало 0,80. Значение р<0,05 указывает на статистическую значимость. Все статистические анализы проводились с использованием программного обеспечения JMP Pro (версия 11, SAS Institute).
Полученные результаты
Переломы наблюдались в 12 бедрах (11 у мужчин, 1 у женщины) из 10 пациентов в группе молодых пациентов и в 36 бедрах (четыре у мужчин, 32 у женщин) из 35 пациентов в группе пациентов среднего и старшего возраста. Средний ИМТ в группе молодых пациентов был значительно ниже, чем в группе пациентов среднего и старшего возраста ( р< 0,01). В трех из 11 тазобедренных суставов (27%) у молодых пациентов, перенесших ДЭРА, и в 24 из 27 тазобедренных суставов (89%) у пациентов среднего и старшего возраста, перенесших ДЭРА, наблюдался остеопороз. Из 12 тазобедренных суставов в группе молодых пациентов семь (58%) были у пациентов, чья профессия связана с интенсивной физической активностью, в том числе шесть тазобедренных суставов у военнослужащих или стажеров полиции. Пациенты с оставшимся 41 бедром сообщили об отсутствии интенсивной физической активности в повседневной жизни. Для лечения нетравматического субхондрального перелома СГ 12 тазобедренных суставов в группе молодых пациентов и одно бедро в группе пациентов среднего и старшего возраста подверглись остеотомии, а 15 тазобедренных суставов в группе пациентов среднего и старшего возраста подверглись ТЭА. Консервативная терапия применялась для лечения оставшихся 20 тазобедренных суставов в группе пациентов среднего и старшего возраста.р < 0,05). В таблице 1 суммированы клинические данные двух групп.
При ацетабулярной дисплазии угол LCEA менее 20° наблюдался достоверно чаще в группе пациентов среднего и старшего возраста (38,9%), чем в группе молодых пациентов (0%) (p < 0,05 ) . Значительные различия также наблюдались в среднем LCEA, остром угле и перекосе крыши вертлужной впадины между группой молодых пациентов и группой пациентов среднего и старшего возраста ( p <0,01, p <0,01 и p <0,001 соответственно) ( табл. 2 ).). Легкий или умеренный остеоартрит тазобедренного сустава, классифицированный как 2 или 3 степень по Келлгрену-Лоуренсу, наблюдался в 12 из 14 случаев дисплазии тазобедренного сустава. В этих 12 бедрах наблюдались остеофиты и интенсивность сигнала, напоминающая отек костного мозга, на латеральной стороне вертлужной впадины в среднем через 1,3 месяца после появления острой боли в бедре; аналогичные результаты не были обнаружены в вертлужной впадине остальных двух диспластических тазобедренных суставов.
У пациентов с ретроверсией вертлужной впадины COS наблюдался достоверно чаще в группе молодых пациентов (41,7%), чем у пациентов среднего и старшего возраста (11,1%) (отношение шансов 5,71; 95% ДИ 1,30–25,4; p < 0,05 ) . ). Кроме того, средний угол антеверсии вертлужной впадины в группе молодых пациентов был значительно меньше, чем в группе пациентов среднего и старшего возраста ( p <0,0001) ( таблица 2 ).
В таблице 3 представлены характеристики группы молодых пациентов. Ацетабулярная ретроверсия наблюдалась только в одном из семи тазобедренных суставов у молодых пациентов с тяжелыми ежедневными физическими нагрузками в анамнезе, тогда как у молодых пациентов, не имевших в анамнезе регулярных интенсивных физических нагрузок, она наблюдалась в четырех из пяти тазобедренных суставов.
Что касается медиолатерального расположения, то медиальный край переломов в группе молодых пациентов располагался медиальнее, чем в группе пациентов среднего и старшего возраста (p < 0,0001), однако достоверной разницы в расположении латерального края не наблюдалось. переломов между двумя группами ( p = 0,45). Медиолатеральная протяженность переломов в группе молодых пациентов была достоверно больше, чем в группе пациентов среднего и старшего возраста ( р < 0,0001) ( рис. 3 и 4 ).
При переднезаднем расположении передний край переломов в группе молодых пациентов располагался кпереди, чем в группе пациентов среднего и старшего возраста ( р < 0,05), тогда как достоверной разницы в расположении заднего края переломов не было. между двумя группами ( р = 0,56). Кроме того, не было значительной разницы в передне-задней протяженности переломов между двумя группами ( p = 0,25) ( рис. 3 ).
Степень медиолатерального субхондрального перелома имела умеренную отрицательную корреляцию со временем от начала боли до операции ( r = -0,66; 95% ДИ от -0,83 до -0,37; p <0,001) ( рис. 5 ).
Примерное распределение переломов показало, что они располагались из стороны в сторону в медиолатеральной СГ и на передней стороне в группе молодых пациентов, но на латеральной и передней сторонах СГ у пациентов среднего возраста и старше (рис. 6 ) . .
FEM-анализ вертлужной впадины показал, что четыре непораженных контралатеральных бедра имели рентгенологические параметры, аналогичные таковым на пораженной стороне ( таблица 4 ). По результатам этого анализа медиолатеральное контактное напряжение в трех из четырех бедер с ретроверсией было широко распространено от латерального края края вертлужной впадины к медиальной области. В оставшемся бедре (пациент 3) он был локализован латерально. И наоборот, медиолатеральное контактное напряжение при дисплазии концентрировалось вокруг латерального края края вертлужной впадины. Переднезаднее контактное напряжение во всех бедрах с ретроверсией и дисплазией распределялось от передних к верхним отделам; у пациента 3 он был распространен назад ( рис. 7 ).
Внутриисследовательская надежность радиологических измерений была почти идеальной (диапазон 0,868–0,989). Межисследовательская надежность радиологических измерений для двух независимых наблюдателей также была почти идеальной (0,842–0,976 и 0,823–0,922).
Обсуждение
В данном исследовании ретроверсия вертлужной впадины наблюдалась у 41,7% молодых пациентов с субхондральным переломом СГ. Насколько нам известно, ни одно из предыдущих исследований не описало связь структуры вертлужной впадины с этой травмой у молодых людей. Несмотря на более низкий ИМТ у молодых пациентов и меньшее количество случаев остеопороза, субхондральные переломы СГ в этой возрастной группе выявили статистически более крупные медиолатеральные переломы по сравнению с переломами у пациентов среднего и старшего возраста в нашем исследовании. Сонг и др. [ 30] сообщили о случаях субхондрального перелома СГ у молодых военнослужащих, у которых были обнаружены медиолатеральные линейные полосы низкой интенсивности сигнала на корональных Т1-взвешенных изображениях. Аналогично, в нашем исследовании примерно половина крупных субхондральных переломов у молодых пациентов могла быть вызвана чрезмерным стрессом от тяжелых физических занятий. Интересно, что у четырех из оставшихся пяти молодых пациентов, не имевших в анамнезе регулярных интенсивных физических нагрузок, была ретроверсия вертлужной впадины. Кроме того, анализ FEM показал распределение медиолатерального напряжения на субхондральной кости в трех из четырех бедер с ретроверсией у молодых пациентов с субхондральным переломом СГ. Эти данные позволяют предположить возможное частичное участие ретроверсии вертлужной впадины в механизме повреждения нетравматического субхондрального перелома СГ у молодых людей.
У пациентов среднего и старшего возраста с субхондральными переломами СГ наблюдалась высокая частота дисплазии вертлужной впадины, что соответствует данным предыдущих отчетов [ 8-10 ]. В нашем исследовании расположение медиального края субхондральных переломов СГ у молодых пациентов располагалось медиально, в отличие от того, что наблюдалось у пациентов среднего и старшего возраста. FEM-исследование структуры вертлужной впадины обычно фокусируется на суставном хряще, чтобы оценить влияние контактного напряжения на остеоартрит [ 27 , 31 , 32 ]. Хенак и др. [ 31 , 32] сообщили, что характер контактного давления на суставной хрящ во время ходьбы при ретровертированных бедрах локализовался медиально. Они также описали, что боковая нагрузка на суставной хрящ СГ приводила к более высокому контактному напряжению в диспластических бедрах, чем в нормальных бедрах. Напротив, FEM обычно выполняется для кости при оценке влияния контактного напряжения на перелом [ 33] .]. Насколько нам известно, ни в одном из предыдущих отчетов не исследовалось распределение напряжения на субхондральной кости с акцентом на структуру вертлужной впадины. Как и в предыдущих отчетах, мы обнаружили, что контактное напряжение на субхондральную кость в ретровертированных бедрах широко распределялось от латерального края края вертлужной впадины к медиальной области. При этом в одном случае дисплазия бедра была сосредоточена на латеральном крае вертлужной впадины. Эти закономерности были связаны с местом перелома у молодых пациентов, среднего и старшего возраста соответственно [ 31 , 32 ]. Таким образом, структура вертлужной впадины может воздействовать на место нетравматического субхондрального перелома СГ посредством контактного напряжения на субхондральной кости.
В настоящем исследовании передне-задняя часть переломов как у молодых, так и у пациентов среднего и старшего возраста располагалась спереди, несмотря на значительную разницу в передних краях переломов между двумя группами. Сообщалось, что субхондральный перелом обычно локализуется в передней части СГ [ 10 ]. Наш анализ FEM в основном выявил переднее или верхнее распределение напряжения в бедрах с ретроверсией и дисплазией. Недавнее биомеханическое исследование с использованием композитной бедренной кости с плотной губчатой костью показало, что внешняя нагрузка вызывает субхондральные переломы в передней части СГ [ 34] .]. Однако положение согнутого бедра во время повседневной деятельности вызывает смещение зоны контакта вперед и более высокую нагрузку на СГ, что может быть связано с нетравматическим субхондральным переломом СГ [ 35 ]. Предыдущие исследования с использованием FEM также показали, что передне-задняя контактная нагрузка на суставной хрящ при диспластических и ретровертированных бедрах варьируется во время ходьбы, спуска или подъема по лестнице [ 31 , 32 , 36 ]. Следовательно, кинетический анализ будет необходим для точной оценки распределения напряжения в передне-задней части субхондральной кости при субхондральном переломе СГ.
Мы также оценили интенсивность сигнала, подобного отеку костного мозга, в вертлужной впадине с дисплазией на МРТ. Нойманн и др. [ 37 ] сообщили о корреляции интенсивности сигнала, подобного отеку костного мозга, с потерей хряща у пациентов с механическими симптомами тазобедренного сустава при МР-артрографии, что указывает на то, что его появление может влиять на развитие остеоартрита тазобедренного сустава. Предыдущее артроскопическое исследование также показало, что дегенерация хряща вертлужной впадины с дисплазией обычно предшествует дегенерации СГ на предартритной стадии [ 38]]. В нашем исследовании интенсивность сигнала, подобная отеку костного мозга, наблюдалась в вертлужной впадине в 12 из 14 диспластических тазобедренных суставов на МР-изображениях, полученных в среднем через 1,3 месяца после появления острой боли в бедре. На рентгенограммах также наблюдалось образование остеофитов на латеральной стороне вертлужной впадины. Однако в ретроспективных исследованиях, подобных этой, доказать причинную связь между переломом и остеоартритом сложно, поскольку неясно, существовало ли остеоартритное изменение до или после возникновения перелома. Сообщалось о субхондральном переломе СГ при остеоартрите тазобедренного сустава [ 39].]. Учитывая, что МРТ была проведена вскоре после появления острой боли в бедре, остеоартрит, возможно, уже существовал на момент перелома в этих 12 диспластических тазобедренных суставах. Однако субхондральный перелом СГ может привести к быстро прогрессирующим остеоартритным изменениям из-за одновременного возникновения субхондрального перелома в вертлужной впадине [ 40 ]. Таким образом, необходимы проспективные исследования, чтобы выяснить, разовьется ли у пациентов с остеоартритом и дисплазией тазобедренного сустава субхондральный перелом СГ.
Недавно Ямагучи и др. [ 41 ] сообщили о высокой распространенности ретроверсии вертлужной впадины у 31 пациента с транзиторным остеопорозом бедра (ТОГ), который характеризуется интенсивностью сигнала, напоминающей отек костного мозга, на МРТ и временной болью в бедре без предшествующей травмы [14 , 42 ] . У шестнадцати (52%) пациентов с ТОГ была ретроверсия вертлужной впадины [ 41 ]. Связь ретроверсии вертлужной впадины с субхондральным переломом СГ еще не обсуждалась. В нашем исследовании у некоторых молодых пациентов с субхондральным переломом СГ также наблюдалась ретроверсия вертлужной впадины, что было похоже на то, что Yamaguchi et al. сообщил. Кроме того, предполагается, что субхондральный перелом FH частично связан с TOH; Мияниси и др. [ 43] сообщили об обнаружении субхондральной полосы на МРТ бедра в 12 бедрах из 11 пациентов с TOH в своем исследовании, аналогично тому, что было обнаружено у молодых пациентов с субхондральным переломом FH [ 1 , 11 ]. Хотя ТОГ обычно наблюдается у мужчин среднего возраста или беременных женщин, сочетание структурных и рентгенологических данных при ТОГ может указывать на патологическое состояние, сходное с таковым у молодых пациентов с субхондральным переломом СГ [44 , 45 ] .
Это исследование имело несколько ограничений. Во-первых, размер выборки был небольшим из-за редкости нетравматических субхондральных переломов СГ у молодых людей. Несколько исследований показали, что на оценку COS, определяемую по переднезадним рентгенограммам, может влиять наклон таза [ 46 , 47 ]. Однако в нашем исследовании наклон таза назад был в пределах нормы у всех пациентов [ 16 ]. Кроме того, COS наблюдался чаще у молодых пациентов с субхондральным переломом СГ (41,7%), чем сообщалось Ezoe et al. [ 48] в нормальных бедрах (7%). Во-вторых, согласно нашему корреляционному анализу, чем обширнее медиолатеральный субхондральный перелом СГ, тем короче время от начала боли до операции. Кроме того, время у молодых пациентов с субхондральным переломом СГ было значительно короче, чем у пациентов среднего и старшего возраста. В конечном итоге всем молодым пациентам в нашем исследовании была произведена остеотомия. Учитывая, что остеотомию необходимо выполнить как можно раньше до возникновения последующих быстрых остеоартритных изменений при субхондральном переломе СГ, тип операции может влиять на продолжительность боли у пациентов [ 15]. В-третьих, наш анализ методом FEM предположил, что бедренная кость жестко соединена с вертлужной впадиной через хрящ. Необходим более сложный анализ методом FEM, чтобы учесть влияние окружающих мышц или трения между вертлужной впадиной и хрящом FH. Подробный механизм возникновения нетравматического субхондрального перелома СГ остается неизвестным. Однако результаты нашего исследования позволяют предположить, что дисплазия и ретроверсия вертлужной впадины могут влиять на место перелома при нетравматическом субхондральном переломе СГ. Для выяснения механизма повреждения при нетравматическом субхондральном переломе СГ могут потребоваться дальнейшие исследования по оценке костных тканей бедра с аномалией вертлужной впадины в конкретных потенциальных местах перелома с использованием компрессионной пробы.
Заключение
Медиолатеральные и передне-верхние переломы в соответствии с распределением напряжений ретроверсией часто наблюдались у молодых пациентов с субхондральным переломом СГ; У пациентов среднего и старшего возраста с субхондральным переломом СГ наблюдались различные рентгенологические особенности. Кроме того, у молодых пациентов с субхондральным переломом СГ, но без регулярной интенсивной физической активности в анамнезе, в большинстве случаев наблюдалась ретроверсия вертлужной впадины. Эти результаты позволяют предположить, что ретроверсия вертлужной впадины может быть частично вовлечена в механизм повреждения нетравматического субхондрального перелома СГ у молодых пациентов.
Благодарности
Мы благодарим Коитиро Кавано, Минцзян Сюй и Кенджи Китамуру (кафедра ортопедической хирургии, Высшая школа медицинских наук, Университет Кюсю) за помощь в редактировании рукописи.
Рекомендации
1.
Бангил М., Субриер М., Дюбост Дж.Дж. и др. Субхондральная недостаточность, перелом головки бедренной кости. Преподобный Рам, английский редактор, 1996 г.; 63: 859–861
Ямамото Т., Буллоу П.Г. Субхондральная недостаточность, перелом головки бедренной кости: дифференциальный диагноз при остром начале коксартроза у пожилых людей. Ревмирующий артрит 1999; 42: 2719–2723
Ивасаки К., Ямамото Т., Мотомура Г., Маватари Т., Накашима Ю., Ивамото Ю. Субхондральный перелом головки бедренной кости у молодых людей. Клин Imaging 2011; 35: 208–213
Ивасаки К., Ямамото Т., Мотомура Г., Икемура С., Ямагути Р., Ивамото Ю. Рентгенологические измерения, связанные с прогнозом и необходимостью хирургического вмешательства у пациентов с субхондральной недостаточностью, переломами головки бедренной кости. АЖР 2013; 201:[web]W97–W103
Ивасаки К., Ямамото Т., Мотомура Г. и др. Распространенная локализация переломов субхондральной недостаточности головки бедренной кости по данным трехмерной магнитно-резонансной томографии. Скелетная радиол 2016; 45: 105–113
Икемура С., Ямамото Т., Мотомура Г., Накашима Ю., Маватари Т., Ивамото Ю. Полезность клинических особенностей для дифференциации перелома субхондральной недостаточности от остеонекроза головки бедренной кости. Арх Ортоп Травматологическая Хирургия 2013; 133: 1623–1627
Ямамото Т., Ивасаки К., Ивамото Ю. Чресвертельная ротационная остеотомия при субхондральном переломе головки бедренной кости у молодых людей. Клин Ортоп Релат Рес 2010; 468: 3181–3185
Зибенрок К.А., Кальберматтен Д.Ф., Ганц Р. Влияние наклона таза на ретроверсию вертлужной впадины: исследование таза на трупах. Клин Ортоп Релат Рес 2003; 407: 241–248
Василев Г.И., Хеллер М.О., Янц В., Перка С., Мюллер М., Реннер Л. Высокая распространенность ретроверсии вертлужной впадины у бессимптомных взрослых: исследование на основе 3D КТ. Костный сустав J 2017; 99-Б:1584–1589
Анда С., Свеннингсен С., Гронтведт Т., Бенум П. Наклон таза и пространственная ориентация вертлужной впадины: рентгенографическое, компьютерно-томографическое и клиническое исследование. Акта Радиол 1990; 31: 389–394
Айк Х., Инаба Ю., Кобаяши Н. и др. Влияние ротационной остеотомии вертлужной впадины на механическое напряжение в тазобедренном суставе у пациентов с дисплазией развития тазобедренного сустава: анализ методом конечных элементов для конкретного субъекта. Костный сустав J 2015; 97-Б:492–497
Вафаян Б., Зонуби Д., Маби М. и др. Конечно-элементный анализ механического поведения диспластических тазобедренных суставов человека: систематический обзор. Хрящевой остеоартрит 2017; 25: 438–447
Бесшо М., Ониси И., Мацуяма Дж., Мацумото Т., Имаи К., Накамура К. Прогнозирование прочности и деформации проксимального отдела бедренной кости с помощью метода конечных элементов на основе КТ. Журнал «Биомеханика» , 2007 г.; 40: 1745–1753
Сон В.С., Ю Джей-Джей, Ку К.Х., Юн КС, Ким Й.М., Ким Х.Дж. Субхондральный усталостный перелом головки бедренной кости у военнослужащих. J Bone Joint Surg, 2004 г.; 86: 1917–1924
Хенак CR, Авраам CL, Андерсон AE и др. Индивидуальный анализ механики хрящей и губ в бедрах человека с дисплазией вертлужной впадины. Хрящевой остеоартрит 2014; 22: 210–217
Миура М., Накамура Дж., Мацуура Ю. и др. Прогнозирование переломной нагрузки и жесткости проксимального отдела бедренной кости с помощью анализа методом конечных элементов на основе КТ: исследование на трупе. BMC Musculoskelet Disord 2017; 18:536
Ван X, Фукуи К., Канеуджи А., Хиросаки К., Миякава Х., Кавахара Н. Инверсия вертлужной губы вызывает повышенное локализованное контактное давление на головку бедренной кости: биомеханическое исследование. Международный Ортоп 2019; 43: 1329–1336
Бергманн Г., Дойретцбахер Г., Хеллер М. и др. Силы контакта тазобедренного сустава и модели походки в результате повседневной деятельности. Журнал «Биомех» , 2001; 34: 859–871
Нойманн Г., Мендикути А.Д., Зоу К.Х. и др. Распространенность разрывов губ и потери хряща у пациентов с механическими симптомами бедра: оценка с помощью МР-артрографии. Хрящевой остеоартрит 2007; 15: 909–917
Фуджи М., Накашима Ю., Джингуши С. и др. Внутрисуставные находки при симптоматической дисплазии тазобедренного сустава. Журнал Педиатр Ортоп 2009; 29:9–13
Кавано К., Мотомура Г., Икемура С. и др. Субхондральный перелом головки бедренной кости у пожилой женщины с симптоматическим остеоартрозом контралатерального бедра. J Orthop Sci, 22 февраля 2018 г. [Epub перед печатью]
Кертисс П.Х. младший, Кинкейд В.Е. Транзиторная деминерализация бедра во время беременности: сообщение о трех случаях. J Bone Joint Surg, 1959 г.; 41-А:1327–1333
Василев Г.И., Хеллер М.О., Дидерихс Г., Янц В., Венцль М., Перка С. Стандартизированные рентгенограммы в переднем просвете не обеспечивают надежных диагностических мер для оценки ретроверсии вертлужной впадины. Дж Ортоп Рес 2012; 30: 1369–1376
Эзоэ М., Найто М., Иноуэ Т. Распространенность ретроверсии вертлужной впадины среди различных заболеваний бедра. J Bone Joint Surg, 2006 г.; 88: 372–379
Насилие со стороны интимного партнера (IPV) — это физическое, сексуальное или эмоциональное насилие между нынешними или бывшими партнерами. Это серьезная проблема общественного здравоохранения, затрагивающая почти каждую четвертую женщину. Тем не менее, ИПВ в значительной степени недооценивается. Визуализация сыграла важную роль в выявлении случаев неслучайной травмы у детей, и, аналогичным образом, она может позволить идентифицировать травмы, полученные в результате ИПВ. Рентгенологи имеют ранний доступ к рентгенологической истории таких жертв и могут быть первыми, кто диагностирует ИПВ на основе распределения и визуализации текущих и прошлых травм пациента. Рентгенологи должны быть знакомы с результатами визуализации, которые указывают на травмы, полученные в результате ИПВ. Особое внимание следует уделить случаям многократного обращения за медицинской помощью при травмах; сосуществующие переломы на разных стадиях заживления, которые могут помочь отличить травмы, связанные с ИПВ, от травм, вызванных незнакомцем; и травмы в защитных местах и целевых областях, таких как лицо и верхние конечности. Авторы представляют обзор современных методов диагностики ИПВ и определяют роль рентгенолога в случаях ИПВ. Они также описывают успешный подход, основанный на диагностической визуализации, для помощи в выявлении ИПВ, с особым акцентом на связанные результаты визуализации и механизмы травм. Кроме того, определены текущие потребности и будущие перспективы для улучшения диагностики этой скрытой эпидемии. Эта информация предназначена для повышения осведомленности радиологов с конечной целью улучшения диагностики ИПВ и, таким образом, уменьшения разрушительных последствий для жизни пострадавших.
После завершения этого мероприятия SA-CME на основе журнала участники смогут:
■ Опишите современные методы диагностики ИПВ и проблемы, связанные с диагностикой этой серьезной проблемы общественного здравоохранения.
■ Определить роль рентгенолога в выявлении пострадавших от ИПВ.
■ Определите результаты визуализации и механизмы травм, связанных с ИПВ.
Введение
Насилие со стороны интимного партнера (IPV), определяемое как физическое, сексуальное или эмоциональное насилие между нынешними или бывшими партнерами, является серьезной проблемой общественного здравоохранения, от которой страдают миллионы женщин в Соединенных Штатах и во всем мире (1 ) . ИПВ удовлетворяет любому определению чрезвычайной ситуации в области общественного здравоохранения: это широко распространенное, хроническое, прогрессирующее и потенциально смертельное заболевание.
Данные Центров по контролю и профилактике заболеваний (CDC) ( 2 ) показывают, что почти каждая четвертая женщина и каждый девятый мужчина сталкивались с ИПВ на протяжении всей своей жизни, с предполагаемой распространенностью 25–30% в Соединенных Штатах. . Данные за пределами США ( 3–5 ) показали, что ИПВ — это глобальное явление, встречающееся во всех регионах и странах . В качестве репрезентативного примера: в опросе 2014 года ( 6 ) 32% женщин в Дании сообщили, что в течение жизни они подвергались физическому насилию со стороны своего партнера.
Чтобы еще больше усложнить этот вопрос, мировые данные Глобального исследования ООН по убийствам ( 1 ) и Национального исследования интимных партнеров и сексуального насилия CDC ( 7 ) показали, что ИПВ часто начинается в подростковом возрасте как «насилие на свиданиях подростков» и достигает кульминации. в убийстве, совершенном интимным партнером, который долгое время подвергался жестокому обращению. Таким образом, жертвы ИПВ, по сравнению с их сверстниками того же возраста, в конечном итоге обращаются за медицинской помощью, которая чаще включает более широкое использование услуг визуализации ( 8-10 ) .
Тем не менее, ИПВ остается широко недооцененной. Пациенты часто обращаются за медицинской помощью по поводу своих травм, не сообщая об ИПВ. Жертвы часто занижают сведения об эпизодах насилия медицинским работникам по разным причинам, в том числе из-за смущения, экономической зависимости, страха возмездия и недоверия к своим медицинским работникам ( 2 , 11 ). Хотя программы скрининга эффективны в снижении уровня насилия и других видов жестокого обращения благодаря увеличению количества обращений в службы поддержки, применению этих программ препятствует ряд барьеров ( 12 ).
Визуализация сыграла важную роль в выявлении неслучайной травмы у детей, демонстрируя, что визуализация имеет решающее значение для выявления жестокого обращения ( 13 ). Точно так же визуализация может позволить обнаружить травмы, вызванные ИПВ, которые в противном случае остались бы незамеченными при использовании современного диагностического подхода, который в основном основан на информации, полученной из скрининговых опросников, проводимых врачом, или самоотчетах о ИПВ. 14). Таким образом, крайне важно, чтобы радиологи были знакомы с результатами визуализации повреждений, вызванных ИПВ, и связанными с ними механизмами, чтобы повысить вероятность наличия ИПВ при обнаружении такого повреждения.
Эта обзорная статья предназначена для того, чтобы предоставить обзор диагностики ИПВ, определить роль радиолога в этих случаях и описать успешный диагностический подход к ИПВ, основанный на визуализации. Мы описываем общие результаты визуализации ИПВ, рассматриваем предполагаемые механизмы травм, связанных с ИПВ, и определяем текущие потребности и будущие перспективы для улучшения диагностики ИПВ. Наша конечная цель — привлечь внимание к этой скрытой эпидемии.
Диагностика ИПВ
Из-за высокой распространенности ИПВ среди населения в целом и данных, показывающих, что направление жертв ИПВ в службы поддержки может снизить риск последующего насилия, психического вреда и других форм жестокого обращения, Целевая группа профилактических служб США (15) рекомендует задать вопрос скрининг на ИПВ у всех женщин детородного возраста. Тем не менее, практика широко варьируется у разных поставщиков медицинских услуг, и скрининг часто используется недостаточно. При опросе 4821 женщины, имеющей доступ к регулярному медицинскому обслуживанию, только 7% из них сообщили о прохождении скрининга на ИПВ ( 16 , 17) .). Даже для категорий высокого риска приверженность скринингу непоследовательна. В исследовании с участием 253 женщин с ИПВ в анамнезе ( 18 ) только 39% женщин сообщили о прохождении соответствующего скрининга.
ИПВ может проявляться в сочетании с широким спектром состояний, от телесных повреждений, связанных с эпизодами насили