• Facebook
  • Instagram
  • WhatsApp
  • Mail
  • Написать
  • Позвонить
микроЗиверт
  • Статьи
    • Лучевая диагностика
    • Радиационная безопасность
  • Клинические наблюдения
    • Грудной отдел
    • Брюшной отдел
    • Голова и шея
    • Конечности
    • Малый таз
  • Услуги
    • Проектирование
    • Лицензирование
    • Рентген на дому
  • Информация
    • Коммерческие предложения
    • Нормативные документы
    • Образцы документов
  • Каталог
    • Ветеринарный рентген
    • Оцифровщики и дигитайзеры
    • Рентгеновская аппаратура
  • О компании
    • Новости
  • Поиск
  • Меню Меню

Риск от рентгеновских и КТ исследований

Лучевая диагностика, Статьи
рентгеновское излучение: польза и вред

Может ли увеличить ли ионизирующее  облучение при рентгенографии, маммографии, остеоденситометрии или  компьютерной томографии (КТ) риск развития рака.

Для большинства женщин существует очень небольшой риск от обычных рентгеновских снимков, таких как маммография или стоматологические рентгеновские снимки. Но многие эксперты обеспокоены увеличением количества исследований с более высокими дозами облучения, таких как компьютерная томография и ядерная визуализация.

Ежегодно в США выполняется более 80 миллионов компьютерных томографий по сравнению с 3 миллионами выполняемых в 1980 году. Для этой тенденции есть веские причины. КТ исследование и лучевая диагностика произвели революцию в диагностике и лечении, почти устранив необходимость в некогда распространенных исследовательских операциях и многих других инвазивных и потенциально рискованных процедурах. Преимущества этих исследований , когда они уместны, намного перевешивают любые связанные с радиацией риски рака, а риск от одного компьютерного томографа или теста ядерной визуализации довольно мал. Но заботимся ли мы о будущих проблемах общественного здравоохранения?

Подверженность ионизирующему излучению растет

Излучение, которое вы получаетепри рентгенографи, компьютерной томографии и ядерной визуализации, представляет собой ионизирующее излучение — волны с высокой длиной волны или частицы, которые проникают в ткани, открывая внутренние органы и структуры тела. Ионизирующее излучение может повредить ДНК, и, хотя ваши клетки восстанавливают большую часть повреждений, иногда они выполняют свою работу несовершенно, оставляя небольшие участки «неправильно восстановленными». Результатом являются мутации ДНК, которые могут способствовать развитию рака спустя годы.

Мы постоянно подвергаемся воздействию небольших доз ионизирующего излучения от естественных источников — в частности, космического излучения, в основном солнечного, и радона, радиоактивного газа, образующегося в результате естественного разложения урана в почве, камнях, воде и других источниках. строительные материалы. Степень воздействия так называемого фонового излучения зависит от многих факторов, в том числе от высоты над уровнем моря и вентиляции дома. Но в среднем составляет 3 миллизиверта (мЗв) в год. (Миллизиверт — это мера радиационного облучения; см. «Измерение радиации».)

Воздействие ионизирующего излучения от естественных или фоновых источников не изменилось примерно с 1980 года, но общее количество радиационного облучения на душу населения в США почти удвоилось, и эксперты считают, что основной причиной является более широкое использование медицинских изображений. Доля общего радиационного облучения от медицинских источников выросла с 15% в начале 1980-х годов до 50% сегодня. Согласно отчету, опубликованному в марте 2009 года Национальным советом по радиационной защите и измерениям, только на КТ приходится 24% всего радиационного облучения в Соединенных Штатах.

Измерение ионизирующего излучения

Если вы упомянете измерение радиации, многие вспомнят классический счетчик Гейгера с его крещендо щелчков. Но счетчики Гейгера фиксируют только интенсивность радиоактивных выбросов. Сложнее измерить их влияние на ткани и здоровье человека. Именно здесь на помощь приходят зиверт (Зв) и миллизиверт (мЗв). Эти единицы, наиболее часто используемые при сравнении процедур визуализации, учитывают биологический эффект излучения, который зависит от типа излучения и уязвимости пострадавших. ткани тела. Принимая это во внимание, миллизиверты описывают то, что называется «эквивалентной дозой».

Ионизирующее излучение и риск рака

Нам давно известно, что дети и подростки, которые получают высокие дозы радиации для лечения лимфомы или других видов рака, с большей вероятностью заболеют дополнительными видами рака в более позднем возрасте. Но у нас нет клинических испытаний, которые могли бы направить наши размышления о риске рака от медицинского излучения у здоровых взрослых. Большая часть того, что нам известно о рисках ионизирующего излучения, получено в результате длительных исследований людей, переживших взрывы атомных бомб в Хиросиме и Нагасаки в 1945 году. Эти исследования показывают немного, но значительно повышенный риск рака у тех, кто подвергся воздействию взрывов, включая группу из 25 000 выживших в Хиросиме, получивших менее 50 мЗв радиации — количество, которое вы можете получить при трех или более компьютерных томограммах. (См. «Процедуры визуализации и их приблизительные эффективные дозы облучения».)

Атомный взрыв не является идеальной моделью для воздействия медицинской радиации, потому что бомба испустила свое излучение сразу, а дозы от медицинских изображений меньше и распространяются во времени. Тем не менее, большинство экспертов считают, что это может быть почти так же вредно, как одновременный прием эквивалентной дозы.

Процедуры визуализации и их приблизительные эффективные дозы облучения *

Процедура Средняя эффективная доза (мЗв) Диапазон, указанный в литературе (мЗв)
Денситометрия 0,001 0,00–0,035
Рентген руки или ноги 0,001 0,0002–0,1
Рентген, панорамный стоматологический 0,01 0,007–0,09
Рентген грудной клетки 0,1 0,05–0,24
Рентген брюшной полости 0,7 0,04–1,1
Маммограмма 0,4 0,10–0,6
Рентген поясничного отдела позвоночника 1.5 0,5–1,8
КТ головы 2 0,9–4
КТ сердца для определения кальциевого индекса 3 1.0–12
Ядерная томография, сканирование костей 6.3
КТ, позвоночник 6 1,5–10
КТ таза 6 3,3–10
КТ, грудь 7 4,0–18
КТ брюшной полости 8 3,5–25
КТ, колоноскопия 10 4,0–13,2
КТ, ангиограмма 16 5,0–32
КТ всего тела переменная 20 или больше
Ядерная визуализация, сердечный стресс-тест 40,7
* Фактическое облучение зависит от многих факторов, включая само устройство, продолжительность сканирования, ваш размер и чувствительность поражаемой ткани.

+ Двухэнергетическая рентгеновская абсорбциометрия, или DXA.

Источник: Mettler FA, et al. «Эффективные дозы в радиологии и диагностической ядерной медицине: каталог», Радиология (июль 2008 г.), Vol. 248. С. 254–63.

Визуализация с более высокими дозами облучения

Большая часть повышенного облучения в США происходит из-за компьютерной томографии и ядерной визуализации, которые требуют более высоких доз радиации, чем традиционные рентгеновские лучи. Рентген грудной клетки, например, дает 0,1 мЗв, а КТ грудной клетки дает 7 мЗв (см. Таблицу) — в 70 раз больше.

В исследовании, проведенном в 2009 году Бригамом и женской больницей в Бостоне, исследователи оценили потенциальный риск рака по результатам компьютерной томографии у 31 462 пациентов в течение 22 лет. Для группы в целом увеличение риска было небольшим — на 0,7% выше общего пожизненного риска рака в Соединенных Штатах, который составляет 42%. Но для пациентов, которым делали несколько компьютерных томографий, риск был выше — от 2,7% до 12%. (В этой группе 33% получили более пяти компьютерных томографий; 5% — более 22 сканирований; и 1% — более 38.)

Как снизить риск от рентгена и КТ?

Если вы не подвергались воздействию высоких доз радиации во время лечения рака в молодости, любое увеличение вашего риска рака из-за медицинского излучения будет незначительным. Но мы действительно не знаем наверняка, поскольку эффекты радиационного поражения обычно проявляются через много лет, а увеличение количества изображений с высокими дозами произошло только с 1980 года.

Поэтому нужно делать следующее:

Обсудите с врачом любую диагностическую визуализацию с высокой дозой облучения. Если вам нужна компьютерная томография или ядерное сканирование для лечения или диагностики заболевания, преимущества обычно перевешивают риски. Тем не менее, если ваш врач назначает компьютерную томографию, разумно спросить, какое значение будет иметь результат для лечения вашего состояния; например, избавит ли вас от инвазивной процедуры?

Следите за своими дозами облучения. Это не будет полностью точным, потому что разные машины доставляют разное количество радиации, и потому что доза, которую вы поглощаете, зависит от вашего размера, вашего веса и части тела, на которую направлено рентгеновское излучение. Но вы и ваш врач получите приблизительную оценку вашего воздействия.

Подумайте о исследовании с более низкой дозой облучения. Если ваш врач рекомендует компьютерную томографию или сканирование ядерной медицины, спросите, подойдет ли другой метод, например, рентген с меньшей дозой или исследование без излучения, например ультразвук (который использует высокочастотные звуковые волны) или МРТ ( который полагается на магнитную энергию). Ни УЗИ, ни МРТ не повреждают ДНК и не увеличивают риск рака.

Рассмотрите возможность менее частого проведения КТ. Если вы регулярно проходите компьютерную томографию при хроническом заболевании, спросите своего врача, можно ли увеличить время между сканированиями. И если вы чувствуете, что компьютерная томография не помогает, обсудите, не могли бы вы использовать другой подход, например, визуализацию с более низкой дозой или наблюдение без визуализации.

Не делайте исследования без назначения . Не просите сделать компьютерную томографию только потому, что вы хотите быть уверены, что прошли «тщательное обследование». КТ редко дает важные результаты у людей без соответствующих симптомов. И есть шанс, что сканирование обнаружит что-то случайное, что вызовет дополнительные компьютерные томографии или рентгеновские снимки, которые увеличивают ваше радиационное воздействие.

Источник: www.health.harvard.edu

03.11.2020/5 комментариев/от Ирина
Теги: безопасность, компьютерная томография, лучевая диагностика, молочная железа, рак молочной железы, рентген
Поделиться записью
  • Поделиться Facebook
  • Поделиться Twitter
  • Share on WhatsApp
  • Поделиться Pinterest
  • Поделиться LinkedIn
  • Поделиться Tumblr
  • Поделиться Vk
  • Поделиться Reddit
  • Поделиться по почте
Вам, возможно, понравится
http://microsievert.ru/rentgen-nosovykh-pazukh/ ‎ Рентген носовых пазух
Математический метод расчета повреждений при COVID-19
визуализации заболеваний грудной клетки Визуализации заболеваний грудной клетки. Практическое руководство
COVID-19 Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)
COVID-19 Компьютерная томография сверхвысокого разрешения может продемонстрировать альвеолярный коллапс при новой пневмонии коронавируса (COVID-19)
Обзор исследований, предостерегающих от КТ грудной клетки для диагностики коронавируса
5 ответы
  1. Вероника
    Вероника говорит:
    06.11.2020 в 11:34

    Е – эффективная доза. Служит мерой биологического риска облучения при КТ-исследовании и позволяет прямое сравнение с эффективной дозой при других видах рентгенодиагностических исследований. Единица измерения – мЗв. Рассчитывается из DLP с использованием коэффициентов пересчета.

    Войдите, чтобы ответить
  2. coronavirusonlayn.ru
    coronavirusonlayn.ru говорит:
    07.11.2020 в 13:41

    Компьютерная томография (КТ) является высокодозным рентгенологическим методом диагностики. В развитых странах доля КТ-исследований в рентгенодиагностике составляет около 4%, а вклад в дозу облучения пациентов – 40% и более. В медицинских учреждениях Республики Беларусь на начало 2008г. в эксплуатации находились 41 компьютерный томограф. В 2007г. было выполнено 224000 КТ-исследований, что составило 1,8% от всех ретгенодиагностических исследований. В Республиканском научно-практическом центре онкологии и медицинской радиологии им. Н. Н. Александрова (РНПЦ ОМР) в 2007г. выполнено 35049 КТ-исследований, что составило 25,0% от всех рентгенисследований. Такие высокие показатели характерны для онкологических учреждений. В онкологии метод КТ используется наиболее широко вследствие высокой информативности и проведения повторных исследований для контроля эффективности противоопухолевого лечения. Не вызывает сомнения, что доля КТ в рентгенодиагностике будет увеличиваться.

    Войдите, чтобы ответить
  3. JohnnyApami
    JohnnyApami говорит:
    25.11.2020 в 00:13

    Годнота спасибо
    _________________

    Войдите, чтобы ответить
  4. ifnezeajz
    ifnezeajz говорит:
    02.12.2020 в 22:46

    Огромное тебе СПАСИБО

    Войдите, чтобы ответить
  5. WilburFab
    WilburFab говорит:
    14.12.2020 в 22:44

    Круто, давно искал

    Войдите, чтобы ответить

Ответить

Хотите присоединиться к обсуждению?
Не стесняйтесь вносить свой вклад!

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Популярные
  • рентгеновское излучение: польза и вредРиск от рентгеновских и КТ исс...03.11.2020 - 19:55
  • Письмо о установке аппаратаИнформационное письмо о покупке...16.12.2019 - 19:13
  • Факторы риска молочной железыФакторы риска рака молочной ж...10.06.2020 - 11:00
  • COVID-19COVID-19. Материалы для врачей рен...28.03.2020 - 16:13
  • Дозиметры медицинскиеmicrosievert.ruИнструкция по организации индивидуального...22.11.2019 - 16:39
Недавние
  • Вегетарианские и веганские диеты и риски тотальных и локальных переломовВегетарианские и веганские диеты...29.12.2020 - 23:52
  • COVID-19COVID-19: долгосрочные легочные последствия...24.12.2020 - 16:19
  • аневризма аортыАневризма аорты13.12.2020 - 12:47
  • визуализации заболеваний грудной клеткиВизуализации заболеваний грудной...10.12.2020 - 12:46
  • двойной бронхДвойной бронх10.12.2020 - 11:05
Отзывы
  • АдминистраторОсновные пределы доз (ПД) 1 мЗв в...27.12.2020 - 10:52 от Администратор
  • портал государственных услуг костромской областиСредняя доза разового облучения...27.12.2020 - 01:42 от портал государственных услуг костромской области
  • АллаМне всякий раз было ясно, Вы непременно...27.12.2020 - 00:57 от Алла
  • ИванРешительно нет практически ничего...26.12.2020 - 22:12 от Иван
  • WilburFabКруто, давно искал 14.12.2020 - 22:44 от WilburFab
Теги
COVID-19 ИИИ МРТ аномалии безопасность вирусная пневмония грудная клетка дозиметрический контроль дозиметрия компьютерная томография коронаровирус лицензирование лучевая диагностика методические документы молочная железа онкология переведенная статья персонал группы А позвоночник проектирование производственный контроль радиационная безопасность рак молочной железы рентген рентгеновский кабинет роспотребнадзор стоматология суставы факторы риска форма 1-ДОЗ

Instagram

💥💥💥Описание случая. Отмечается большая мешотчатая аневризма дистальных отделов дуги аорты (начинается сразу после отхождения левой подключичной артерии) с распространением на нисходящую аорту. Поперечный размер аневризмы – 66х67 мм, вертикальный - 80 мм. После внутривенного введения контрастного препарата данных за расслоение аневризмы не получено, по верхнелевому контуру аневризмы определяется полулунной формы пристеночный тромб толщиной до 20 мм, на уровне тромба сечение просвета аневризмы – 58х44 мм.
💉💉💉🔬🔬🔬
Обсуждение случая. 
Аневризмы – патологическое расширение артерий вследствие истончения их стенок.
 Наиболее известными причинами являются гипертензия, атеросклероз, инфекция, травма, наследственные или приобретенные заболевания соединительной ткани (например, синдром Марфана, синдром Элерса-Данлоу).

Аневризмы обычно бессимптомны, однако в некоторых случаях их формирование может сопровождаться болевым синдромом, приводить к ишемии, тромбоэмболиям, спонтанным диссекциям и разрывам, которые в свою очередь могут быть причиной летального исхода.

🩺🩺🩺Аневризма – патологическое расширение артерий─ определяется при увеличении артериального диаметра на ≥ 50% по сравнению с нормальным. Они обусловлены истончением артериальной стенки, особенно медиа. Истинные аневризмы вовлекают 3 слоя сосудистой стенки (интиму, медиа и адвентицию).
💕💕💕Заполненная кровью полость образуется вне стенки сосуда и существующий дефект закрывается тромбом. Псевдоаневризмы (ложные аневризмы) формируются в результате образования соединения между артериальным просветом и соединительной тканью, окружающей аорту, на месте её разрыва.
Аневризмы классифицируются следующим образом:
• Веретенообразные: расширение стенок артерии со всех сторон
• Мешковидные: локализованные, обычно асимметричные, выпячивания стенки артерии

#radiology #radiologytech #radiologylife #radiologystudent #radiologyclub #radiologyfamily #radiologyteam #xray #xrays #xraytech #xraylife #computedtomography #medicine #diagnosticimaging
#аорта #аневризмааорты #компьютернаятомография #контрастирование #aortae #berryaneurysm
Описание случая В центральных отделах правой верхней доли, на уровне впадения v.azygos, определяется округлое образование, солидной структуры, с четкими, умеренно бугристыми контурами, размерами 17х16х14 мм, плотностью в нативную фазу 28 ед.Н, без признаков накопления контрастного вещества в артериальную и венозную фазы контрастирования.

Определяется вариант строения бронхиального дерева: высокое отхождение бронха B1-2, от правой боковой стенки трахеи на уровне ее бифуркации. Объемное образование прилежит кпереди от бронха В2 на уровне его деления на субсегментарные ветви и расположено, таким образом, на границе сегментов S1/2.

Обсуждение случая:

Среди аномалий ветвления бронхов отдельное место занимает такая анатомическая аномалия, как «двойной» бронх. Этот термин практически оговорен только для верхнедолевого бронха правого легкого и означает, что один из сегментарных бронхов верхней доли (как правило бронх S1) отходит не от верхнего долевого бронха, а непосредственно от главного. Клиническое значение этого вида аномалии очевидно, так как определенным образом бу-дет меняться техника верхнедолевых лобэктомий, что чрезвычайно важно учитывать при планировании хирургического вмешательства на легких

Самостоятельное отхождение верхушечного бронха, так называемый двойной бронх, как вариант строения верхнедолевого бронха наблюдается редко – у 0,2–0,3 % больных.

При этом термин «двойной» бронх представляется неудачным. По сути, говоря о «двойном» бронхе, мы имеем в виду не истинное удвоение ствола долевого бронха, а то, что сегментарный бронх S1 верхней доли правого лег-кого открывается на стенке правого главного бронха отдельным устьем, т.е. отходит от более крупного бронха, минуя предшествующую бронхиальную генерацию
8 ноября 1895 Вильгельм Конрад Рёнтген работал в лаборатории Вюрцбургского университета. Он снова включил ток в катодной трубке, закрытой со всех сторон плотной чёрной бумагой. Кристаллы платиноцианистого бария, лежавшие неподалёку, начали светиться зеленоватым цветом. Учёный выключил ток — свечение кристаллов прекратилось. При повторной подаче напряжения на катодную трубку, свечение в кристаллах, никак несвязанных с прибором, возобновилось.В результате дальнейших исследований учёный пришёл к выводу, что из трубки исходит неизвестное излучение, названное им в последствии икс-лучами.

🥇🥇🥇,Впервые в истории врачи получили в свои руки инструмент, позволяющий заглянуть внутрь человеческого тела без хирургического вмешательства. В результате, метод исследования с помощью икс-лучей чрезвычайно быстро распространился в Европе и США. Меньше чем через месяц после публикации Рентгена 20 января 1896 года врачи города Дартмунд (США) с помощью "его" лучей увидели перелом руки.

🚢🚢🚢В России под руководством А.С. Попова в 1897 году был запущен первый рентгеновский кабинет. Рентгеновский аппарат был установлен на крейсер "Аврора". Теперь при сражениях моряки сразу же могли быть обследованы методом "пулеграфии", который позволял находить осколки в теле.

Несколько интересных фактов:💥💥💥🔥🔥

💥💥💥Первые снимки в катодных лучах (а это и есть лучи, названные впоследствии рентгеновскими) были сделаны в г.Баку еще в 1884 году.

💥💥💥Рентген категорически отказывался патентовать свое излучение, хотя это принесло бы ему огромную прибыль

💥💥💥Рентген почти не выступал публично, так как его раздражала внезапно свалившаяся на него известность, отрывавшая у него драгоценное время и мешавшая дальнейшим экспериментальным исследованиям.

💥💥💥Рентген был категорически против, чтобы его именем назвали x-лучи.

💥💥💥Знаменитая фотография руки супруги рентгена распространялась на рождественских открытках 1995 года.
Рождение лучевой диагности Рождение лучевой диагностики как науки и, позднее, как специальности состоялось 8 ноября 1895 г., когда профессор Вюрцбургского университета Вильгельм Конрад Рентген, проводя эксперименты с катодными трубками, открыл Х-лучи.  22 декабря 1895 г. 
Рентген произвел 15-минутную экспозицию Х-лучами руки своей жены Берты и получил снимки костей кисти с кольцами на пальцах. Впоследствии эти лучи были названы в его честь «рентгеновскими лучами», а Вильгему Рентгену была присуждена Нобелевская премия за открытие Х-лучей. 

5 января 1896 года - П.Н.Лебедев делает доклад о рентгеновских лучах на Собрании Общества любителей естествознания в Москве, о чем Лебедев письменно информирует Рентгена.
 6 января Г.Б.Раутенфельд-Линденру и физик Г.Э.Пфлаум в Рижской городской гимназии сделали снимки верхней челюсти рыбы-пилы. Это бы-ли первые в России рентгенограммы.
Вслед за первыми демонстрационными опытами началось применение рентгеновских лучей в практической медицине. Уже с марта 1896 года 60- летний профессор Н.В. Cклифосовский, директор Клинического института в Петербурге стал пользоваться рентгенографией для диагностики переломов костей.  В 1918 г. в Петербурге открыли первый в мире рентгенологический, радиологический и раковый институт.
В 1971 г. в Лондоне был установлен прототип рентгеновского компьютерного томографа. Он был создан инженером Годфри Хаунсфилдом. Ученые, преодолев серьезные технические трудности, в 1975 г. создали рентгеновский компьютерный томограф для исследования всего тела. За создание метода компьютерной томографии Годфри Хаунсфилду и Алану Кормаку в 1979 г. была присуждена Нобелевская премия по медицине.
Основы другой томографической методики - магнитно-резонансной томографии (МРТ) - заложили работы двух Нобелевских лауреатов - физиков Ф. Блоха и Э. Парселла (1952 г.), открывших эффект ядерного магнитного резонанса (ЯМР).

#рентген #рентгенология #xray #вильгельмрентген #историярентгенологии #microsievert
Подробнее Подписаться

Нормативные документы

  • Письмо в Роспотребнадзор о покупке аппарата (19,5 KiB, 386 hits)
  • Чек-лист заведующего отделением лучевой диагностики. Лифлет (2,8 MiB, 333 hits)
  • Приказы и методические указания (12,7 MiB, 316 hits)
  • СанПиН 2.6.1.1192-03 Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов (456,9 KiB, 313 hits)
  • МУ 2.6.1.2944-11. Контроль эффективных доз облучения пациентов при проведении медицинских рентгеноло... (794,4 KiB, 291 hits)

Downloads Page

Рубрики

  • Информация (3)
    • Нормативные документы (2)
    • Образцы документов (2)
  • Клинические наблюдения (2)
    • Грудной отдел (2)
  • О компании (1)
  • Статьи (53)
    • Лучевая диагностика (27)
    • Онкология (1)
    • Радиационная безопасность (10)
  • Услуги (6)
    • Лицензирование (4)
    • Проектирование (2)

Instagram

💥💥💥Описание случая. Отмечается большая мешотчатая аневризма дистальных отделов дуги аорты (начинается сразу после отхождения левой подключичной артерии) с распространением на нисходящую аорту. Поперечный размер аневризмы – 66х67 мм, вертикальный - 80 мм. После внутривенного введения контрастного препарата данных за расслоение аневризмы не получено, по верхнелевому контуру аневризмы определяется полулунной формы пристеночный тромб толщиной до 20 мм, на уровне тромба сечение просвета аневризмы – 58х44 мм.
💉💉💉🔬🔬🔬
Обсуждение случая. 
Аневризмы – патологическое расширение артерий вследствие истончения их стенок.
 Наиболее известными причинами являются гипертензия, атеросклероз, инфекция, травма, наследственные или приобретенные заболевания соединительной ткани (например, синдром Марфана, синдром Элерса-Данлоу).

Аневризмы обычно бессимптомны, однако в некоторых случаях их формирование может сопровождаться болевым синдромом, приводить к ишемии, тромбоэмболиям, спонтанным диссекциям и разрывам, которые в свою очередь могут быть причиной летального исхода.

🩺🩺🩺Аневризма – патологическое расширение артерий─ определяется при увеличении артериального диаметра на ≥ 50% по сравнению с нормальным. Они обусловлены истончением артериальной стенки, особенно медиа. Истинные аневризмы вовлекают 3 слоя сосудистой стенки (интиму, медиа и адвентицию).
💕💕💕Заполненная кровью полость образуется вне стенки сосуда и существующий дефект закрывается тромбом. Псевдоаневризмы (ложные аневризмы) формируются в результате образования соединения между артериальным просветом и соединительной тканью, окружающей аорту, на месте её разрыва.
Аневризмы классифицируются следующим образом:
• Веретенообразные: расширение стенок артерии со всех сторон
• Мешковидные: локализованные, обычно асимметричные, выпячивания стенки артерии

#radiology #radiologytech #radiologylife #radiologystudent #radiologyclub #radiologyfamily #radiologyteam #xray #xrays #xraytech #xraylife #computedtomography #medicine #diagnosticimaging
#аорта #аневризмааорты #компьютернаятомография #контрастирование #aortae #berryaneurysm
Описание случая В центральных отделах правой верхней доли, на уровне впадения v.azygos, определяется округлое образование, солидной структуры, с четкими, умеренно бугристыми контурами, размерами 17х16х14 мм, плотностью в нативную фазу 28 ед.Н, без признаков накопления контрастного вещества в артериальную и венозную фазы контрастирования.

Определяется вариант строения бронхиального дерева: высокое отхождение бронха B1-2, от правой боковой стенки трахеи на уровне ее бифуркации. Объемное образование прилежит кпереди от бронха В2 на уровне его деления на субсегментарные ветви и расположено, таким образом, на границе сегментов S1/2.

Обсуждение случая:

Среди аномалий ветвления бронхов отдельное место занимает такая анатомическая аномалия, как «двойной» бронх. Этот термин практически оговорен только для верхнедолевого бронха правого легкого и означает, что один из сегментарных бронхов верхней доли (как правило бронх S1) отходит не от верхнего долевого бронха, а непосредственно от главного. Клиническое значение этого вида аномалии очевидно, так как определенным образом бу-дет меняться техника верхнедолевых лобэктомий, что чрезвычайно важно учитывать при планировании хирургического вмешательства на легких

Самостоятельное отхождение верхушечного бронха, так называемый двойной бронх, как вариант строения верхнедолевого бронха наблюдается редко – у 0,2–0,3 % больных.

При этом термин «двойной» бронх представляется неудачным. По сути, говоря о «двойном» бронхе, мы имеем в виду не истинное удвоение ствола долевого бронха, а то, что сегментарный бронх S1 верхней доли правого лег-кого открывается на стенке правого главного бронха отдельным устьем, т.е. отходит от более крупного бронха, минуя предшествующую бронхиальную генерацию
8 ноября 1895 Вильгельм Конрад Рёнтген работал в лаборатории Вюрцбургского университета. Он снова включил ток в катодной трубке, закрытой со всех сторон плотной чёрной бумагой. Кристаллы платиноцианистого бария, лежавшие неподалёку, начали светиться зеленоватым цветом. Учёный выключил ток — свечение кристаллов прекратилось. При повторной подаче напряжения на катодную трубку, свечение в кристаллах, никак несвязанных с прибором, возобновилось.В результате дальнейших исследований учёный пришёл к выводу, что из трубки исходит неизвестное излучение, названное им в последствии икс-лучами.

🥇🥇🥇,Впервые в истории врачи получили в свои руки инструмент, позволяющий заглянуть внутрь человеческого тела без хирургического вмешательства. В результате, метод исследования с помощью икс-лучей чрезвычайно быстро распространился в Европе и США. Меньше чем через месяц после публикации Рентгена 20 января 1896 года врачи города Дартмунд (США) с помощью "его" лучей увидели перелом руки.

🚢🚢🚢В России под руководством А.С. Попова в 1897 году был запущен первый рентгеновский кабинет. Рентгеновский аппарат был установлен на крейсер "Аврора". Теперь при сражениях моряки сразу же могли быть обследованы методом "пулеграфии", который позволял находить осколки в теле.

Несколько интересных фактов:💥💥💥🔥🔥

💥💥💥Первые снимки в катодных лучах (а это и есть лучи, названные впоследствии рентгеновскими) были сделаны в г.Баку еще в 1884 году.

💥💥💥Рентген категорически отказывался патентовать свое излучение, хотя это принесло бы ему огромную прибыль

💥💥💥Рентген почти не выступал публично, так как его раздражала внезапно свалившаяся на него известность, отрывавшая у него драгоценное время и мешавшая дальнейшим экспериментальным исследованиям.

💥💥💥Рентген был категорически против, чтобы его именем назвали x-лучи.

💥💥💥Знаменитая фотография руки супруги рентгена распространялась на рождественских открытках 1995 года.
Рождение лучевой диагности Рождение лучевой диагностики как науки и, позднее, как специальности состоялось 8 ноября 1895 г., когда профессор Вюрцбургского университета Вильгельм Конрад Рентген, проводя эксперименты с катодными трубками, открыл Х-лучи.  22 декабря 1895 г. 
Рентген произвел 15-минутную экспозицию Х-лучами руки своей жены Берты и получил снимки костей кисти с кольцами на пальцах. Впоследствии эти лучи были названы в его честь «рентгеновскими лучами», а Вильгему Рентгену была присуждена Нобелевская премия за открытие Х-лучей. 

5 января 1896 года - П.Н.Лебедев делает доклад о рентгеновских лучах на Собрании Общества любителей естествознания в Москве, о чем Лебедев письменно информирует Рентгена.
 6 января Г.Б.Раутенфельд-Линденру и физик Г.Э.Пфлаум в Рижской городской гимназии сделали снимки верхней челюсти рыбы-пилы. Это бы-ли первые в России рентгенограммы.
Вслед за первыми демонстрационными опытами началось применение рентгеновских лучей в практической медицине. Уже с марта 1896 года 60- летний профессор Н.В. Cклифосовский, директор Клинического института в Петербурге стал пользоваться рентгенографией для диагностики переломов костей.  В 1918 г. в Петербурге открыли первый в мире рентгенологический, радиологический и раковый институт.
В 1971 г. в Лондоне был установлен прототип рентгеновского компьютерного томографа. Он был создан инженером Годфри Хаунсфилдом. Ученые, преодолев серьезные технические трудности, в 1975 г. создали рентгеновский компьютерный томограф для исследования всего тела. За создание метода компьютерной томографии Годфри Хаунсфилду и Алану Кормаку в 1979 г. была присуждена Нобелевская премия по медицине.
Основы другой томографической методики - магнитно-резонансной томографии (МРТ) - заложили работы двух Нобелевских лауреатов - физиков Ф. Блоха и Э. Парселла (1952 г.), открывших эффект ядерного магнитного резонанса (ЯМР).

#рентген #рентгенология #xray #вильгельмрентген #историярентгенологии #microsievert
Подробнее Подписаться

Поиск по сайту

Яндекс.Метрика

Контакты

ИП Тихмянов Андрей Юрьевич
ИНН   505440819918
ОГРНИП  313503236000046

Позвонить: 8 (800) 2013-213
Написать: info@microsievert.ru

Сведения об индивидуальном предпринимателе

Выписка из ЕГРИП

микроЗиверт - Enfold WordPress Theme by Kriesi
  • Facebook
  • Instagram
  • WhatsApp
  • Mail
Прокрутить наверх